
pychoacoustics Documentation
Release 0.6.12

Samuele Carcagno

May 02, 2024

Contents

1 What is pychoacoustics? 2

2 Installation 5

3 Graphical User Interface 6
3.1 Quickstart . 6
3.2 The Control Window . 6

3.2.1 General Widgets (left panel) . 7
3.2.2 Additional Widgets (left panel) . 10
3.2.3 General Widgets (right panel) . 11
3.2.4 Paradigm Widgets . 12
3.2.5 1-Pair Same/Different Paradigm Widgets 12
3.2.6 Constant 1-Interval 2-Alternatives Paradigm Widgets 12
3.2.7 Constant m-Intervals n-Alternatives Paradigm Widgets 12
3.2.8 Multiple Constants ABX Paradigm Widgets 12
3.2.9 Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets 12
3.2.10 Multiple Constants m-Intervals n-Alternatives Paradigm Widgets . . . 13
3.2.11 Odd One Out Paradigm Widgets . 13
3.2.12 PEST Paradigm Widgets . 13
3.2.13 PSI Paradigm Widgets . 14
3.2.14 Transformed Up-Down Paradigm Widgets 14
3.2.15 Transformed Up-Down Interleaved Paradigm Widgets 14
3.2.16 UML Paradigm Widgets . 15
3.2.17 Weighted Up-Down Paradigm Widgets 17
3.2.18 Weighted Up-Down Interleaved Paradigm Widgets 18
3.2.19 The Menu Bar . 19
3.2.20 The File Menu . 19
3.2.21 The Edit Menu . 19
3.2.22 The Tools Menu . 20
3.2.23 The Help Menu . 20
3.2.24 The “what’s this?” Button. 20

3.3 Process Results Dialog . 20
3.4 Edit Preferences Dialog . 21

i

3.4.1 General . 21
3.4.2 Sound . 22
3.4.3 Response Box . 23
3.4.4 Notifications . 23
3.4.5 EEG . 24

3.5 Edit Phones Dialog . 24
3.5.1 Calibrating with an SPL meter . 25
3.5.2 Calibrating with a voltmeter . 25

3.6 Edit Experimenters Dialog . 26
3.7 The Response Box . 27

4 Command Line User Interface 28

5 Paradigms 30
5.1 Available Paradigms . 30

5.1.1 Transformed Up-Down . 30
5.1.2 Transformed Up-Down Interleaved 31
5.1.3 Weighted Up-Down . 31
5.1.4 Weighted Up-Down Interleaved . 31
5.1.5 Constant m-Intervals n-Alternatives 31
5.1.6 Constant 1-Interval 2-Alternatives 31
5.1.7 Constant 1-Pair Same/Different . 31
5.1.8 Multiple Constants 1-Pair Same/Different 31
5.1.9 Multiple Constants ABX . 32
5.1.10 Odd One Out . 32
5.1.11 PEST . 32
5.1.12 PSI . 32
5.1.13 UML . 32

6 Result Files 33
6.1 Tabular Results Files . 34
6.2 Plain-Text Result Files . 37
6.3 Result Files by Paradigm . 38

6.3.1 Transformed Up-Down and Weighted Up-Down 38
6.3.2 Transformed Up-Down and Weighted Up-Down Interleaved Result Files 41
6.3.3 UML and PSI Result Files . 43
6.3.4 PEST Result Files . 44
6.3.5 Constant m-Intervals n-Alternatives Result Files 46
6.3.6 Multiple Constants m-Intervals n-Alternatives Result Files 48
6.3.7 Constant 1-Intervals 2-Alternatives Result Files 51
6.3.8 Multiple Constants 1-Intervals 2-Alternatives Result Files 53
6.3.9 Constant 1-Pair Same/Different Result Files 57
6.3.10 Multiple Constants 1-Pair Same-Different Result Files 60
6.3.11 Multiple Constants ABX Result Files 62
6.3.12 Multiple Constants Odd One Out Result Files 64
6.3.13 Multiple Constants Sound Comparison Result Files 66

6.4 Log Results Files . 68

7 Default Experiments 69

ii

7.1 Audiogram . 69
7.2 Demo Audiogram Multiple Frequencies . 69
7.3 Demo Frequency Discrimination . 69
7.4 Demo Signal Detection . 69
7.5 Dummy Adaptive . 69
7.6 F0DL . 69
7.7 Level Discrimination . 69
7.8 WAV ABX . 69
7.9 WAV Comparison . 69
7.10 WAV Same/Different . 69

8 The pychoacoustics Engine 70
8.1 Sound Output . 70

8.1.1 Sound Output on Linux . 70
8.1.2 Sound Output on Windows . 71
8.1.3 Sound Output on macOS . 71
8.1.4 Sound Output on FreeBSD . 71

8.2 Parameters Files . 71
8.3 Block Presentation Position . 72
8.4 Displaying Task Instructions . 74
8.5 OS Commands . 74
8.6 Preferences Settings . 75
8.7 Response Mode . 76

9 Writing your own Experiments 78
9.1 First Steps . 78

9.1.1 Anatomy of a pychoacoustics experiment file 79
9.2 Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment 89
9.3 Writing an experiment for the Transformed Up-Down Interleaved, Weighted

Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms . 91
9.3.1 Writing a matching experiment using interleaved adaptive tracks . . . 97

9.4 Writing a “Constant 1-Pair Same/Different” Paradigm Experiment 101
9.5 Writing an “Odd One Out” Paradigm Experiment 101
9.6 The Experiment “opts” . 101
9.7 The Play Sound Functions . 103
9.8 Simulations . 103

10 Troubleshooting 105
10.1 The computer crashed in the middle of an experimental session 105

11 sndlib – Sound Synthesis Library 106

12 pysdt – Signal Detection Theory Measures 107

13 GNU Free Documentation License 108

14 Indices and tables 115

iii

Bibliography 116

iv

pychoacoustics Documentation, Release 0.6.12

Author
Samuele Carcagno <sam.carcagno@gmail.com>

pychoacoustics version 0.6.12, last updated May 02, 2024

Copyright ©2012–2023 Samuele Carcagno <sam.carcagno@gmail.com>. Permission is
granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

Disclaimer: This document comes with NO WARRANTY whatsoever of being correct in any
of its parts. This document is work in progress.

Contents:

1

mailto:sam.carcagno@gmail.com
mailto:sam.carcagno@gmail.com

1
What is pychoacoustics?

pychoacoustics is a software for programming and running experiments in auditory psy-
chophysics (psychoacoustics). The software contains a set of predefined experiments that can
be immediately run after installation. Importantly, pychoacoustics is designed to be exten-
sible so that users can add new custom experiments with relative ease. Custom experiments
are written in Python, a programming language renowned for its clarity and ease of use. The
application is divided in two graphical windows a) the “response box”, shown in Figure The
pychoacoustics response box, with which listeners interact during the experiment, and b) the
control window, shown in Figure The pychoacoustics control window, that contains a series of
widgets (choosers, text fields and buttons) that are used by the experimenter to set all of the rel-
evant experimental parameters which can also be stored and later reloaded into the application.

Fig. 1: The pychoacoustics response box

Some of the main features of pychoacoustics are that:

• pychoacoustics lets you create complex auditory experiments with relative ease

• experimental variables can be easily manipulated, stored, and retrieved using a graphical
user interface

2

pychoacoustics Documentation, Release 0.6.12

Fig. 2: The pychoacoustics control window

• pychoacoustics takes care of stimulus presentation, including setting up interval lights and
response buttons

• pychoacoustics takes care of collecting responses, computing summary measures such
as threshold estimates, and d’, and storing them as CSV files so that they can be read-
ily visualized and processed using statistics programs (R, SPSS, etc. . .), or spreadsheet
applications (Excel, Libreoffice Calc, etc. . .)

• pychoacoustics supports the most commonly used stimulus presentation procedures, such
as the transformed up-down, same-different, and ABX procedures. It also supports less
known and cutting-edge procedures such as the updated maximum likelihood (UML) and
the PSI+ and PSI-marginal procedures

• for many procedures pychoacoustics can provide graphical summaries of the results

• pychoacoustics stores all important information, including names and values of experi-
mental parameters, timestamps, participant identification codes (if provided), version of
the software used to run the experiment, etc. . . , so that no important information is acci-
dentally lost

• pychoacoustics allows you to present standardized written instructions to participants at
the beginning of the experiment, or at the beginning of specific blocks of trials. Partic-
ipants can also get an idea of how much of an experiment they have completed through
optional progress bars.

• pychoacoustics includes sndlib.py, a library that lets you easily generate experimental
stimuli commonly used in psychoacoustics experiments (pure tones, complex tones, noise,
etc. . .)

3

pychoacoustics Documentation, Release 0.6.12

I started writing pychoacoustics for fun and for the sake of learning around 2008 while doing
my PhD under the supervision of Professor Chris Plack at Lancaster University. At that time
we were using in the lab a MATLAB program called the “Earlab” written by Professor Plack.
pychoacoustics has been greatly influenced and inspired by the “Earlab”. For this reason,
as well as for the time he dedicated to teach me audio programming, I am greatly indebted to
Professor Plack.

4

2
Installation

pychoacoustics is written in Python and requires the installation of a Python interpreter. Once
the Python interpreter has been installed, pychoacoustics can be installed via pip:

pip install pychoacoustics

once pychoacoustics is installed you can launch it from a bash/DOS terminal with the command

pychoacoustics

Note that the program needs to be launched in the same Python environment in which it has
been installed. The program has been tested on Linux and Windows. It should work also on
Mac computers but this has not been tested. Depending on your Python distribution you may
want to install the python modules pychoacoustics depends on before installing pychoacoustics
(e.g. via the conda package manager if you’re using the Anaconda Python distribution). The
dependencies are:

• PyQt6

• numpy

• scipy

• pandas

• matplotlib

• PyAudio

• pysofaconventions

if you’re using Linux you can also install pyalsaaudio to have an additional sound output op-
tion. If you’re using conda on Windows I’d recommend installing PyAudio via pip because the
PyAudio version available on conda is not built with support for the WASAPI output interface
(at least that was the case the last time I checked).

5

3
Graphical User Interface

The user interface is divided into two windows: the “Control Window” and the “Response Box”.
The “Control Window” is used to set the experimental parameters, while the “Response Box”
is the interface with which listeners interact.

3.1 Quickstart

When pychoacoustics is launched, the “Control Window” displays the default parameters for
the “Audiogram” experiment. You can select another experiment using the “Experiment” drop-
down menu, and edit any of the parameter fields you want to modify. Once you’re satisfied with
the parameters, you can store them by pressing the “Store” button. This stores one experimental
block with the chosen parameters. At this point you can either start running the experiment by
pressing the “Start” button on the “Response Box”, or you can add more experimental blocks
by clicking on the “New Block” button.

To save the parameters to a file click on the “Save Prm” button. Parameter files that have been
saved in this way can be later loaded into the program by using the “Load Prm” button.

To save the results of your experiment to a file, click on the “Save Results” button. If you have
forgotten to specify a results file in this way, pychoacoustics will save the results in a file
called test.txt in the working directory.

3.2 The Control Window

The control window contains a set of widgets to manage the setup of the experiments, running
the experiments, processing results files and managing application preferences. Some of the
widgets are general, and some of them are specific either to a given paradigm (e.g. adaptive vs
constant stimuli paradigm) or to a given experiment.

In the next section the function of these widgets will be explained, starting with the widgets that
are general to all experiments and paradigms.

6

pychoacoustics Documentation, Release 0.6.12

3.2.1 General Widgets (left panel)

• Listener This is simply a label that you can use to identify the listener who is being tested.
This label will be written in the header of the results file.

• Experiment Label. This is a label to identify the experiment you are running. This label
will be written in the header of the results file.

• Session This is a label to identify the experimental session, it can be a number or a string.
This label will be written in the header of the results file.

• Condition Label This is a label to identify the experimental condition of the current block
of trials. It is optional, but it may be useful when sorting the experimental results (see
Tabular Results Files).

• Task Label This label will be shown in the response box to tell the listener which task
s/he’s doing. Useful in case different tasks are mixed within a session.

• Instructions This box allows to give task instructions to the listener. If the block of
trials occurs at a block position in which task instructions are set to be shown (see “Show
Instructions At BP” field below), the text written in this box will will be shown to listeners
at the beginning of the block of trials (see Displaying Task Instructions for more info).

• Show Instructions At BP Indicate the block positions (see Block Presentation Position
for a definition of block positions) at which the instructions should be shown to the listener.
The block positions have to be indicated by a list of numbers separated by commas (see
Displaying Task Instructions for more info).

• End Command Here you can write an operating system command (e.g. a bash command
on Unix systems or a DOS command on Windows systems) to be performed at the end of
the experimental session. This could be used to run a custom script to analyse the result
files, make a backup of the results files or other purposes. There are some variables (such
as the name of the results file) that can be accessed with a special string. These are listed
in Section OS Commands Table pychoacoustics variables Please refer to that section for
further info on how to use them.

• Shuffling Scheme By default when you click the “Shuffle” button, pychoacoustics
randomly shuffles all blocks, here you can specify different shuffling schemes (e.g. shuffle
the first four blocks among themselves and the last four blocks among themselves). Please
refer to Section Block Presentation Position for more details.

• Proc. Res. Process the “block summary” file at the end of the experimental session in
order to obtain a “session summary” file (see Result Files).

• Proc. Res. Table Process the “table block summary” file at the end of the experimental
session in order to obtain a “table session summary” file (see Result Files).

• Plot Plot the results at the end of the experimental session. This function is available only
if both matplotlib and pandas are installed. Plots are available only for some experimental
paradigms.

• PDF Plot Create a PDF file plotting the results at the end of the experimental session. This
function is available only if both matplotlib and pandas are installed. Plots are available
only for some experimental paradigms.

3.2. The Control Window 7

pychoacoustics Documentation, Release 0.6.12

• Experimenter Here you can select one of the experimenters listed in the experimenter
database. Please refer to Section Edit Experimenters Dialog for further info on the exper-
imenter database and how it can be used.

• Experiment Selects the experiment for the current block.

• Paradigm Selects the paradigm (e.g. transformed up-down, constant, etc. . .) for the
current block. The list of paradigms available depends on the experiment that is selected.

• Phones Choose from one of the phone models stored in the phones database. Please, refer
to Section Edit Phones Dialog for further info on how to enter phones and calibration
values in the database.

• Sample Rate (Hz) Set the sampling rate of the sounds to be played. Any value can be
entered in the text fields. However, you should enter a value that is supported by your
soundcard. A value that is not supported by your souncard may lead to issues, although
it’s more likely that your computer will perform an automatic sample rate conversion to
a supported sample rate.

• Bits Set the bit depth that pychoacoustics uses to store sounds to a wav file or play
them. Currently values of 16 and 32 bits are supported. A value of 32 bits can be used
for 24-bit soundcards. Notice that achieving 24-bit output requires both a 24-bit souncard
and a play command that can output 24-bit sounds. Therefore selecting a value of 32 bits
here does not guarantee 24-bit playback even if you have a 24-bit souncard. Please, refere
to Section Sound Output for further information on this issue.

• No. Repetitions Set the number of times the sequence of blocks stored in memory should
be repeated. If the “Shuffle Mode” (see below) is set to “auto”, each time a new repetition
starts the block positions will be shuffled. If the “Shuffle Mode” is set to “Ask”, each time
a new repetition starts the user will be asked if s/he wants to shuffle the block positions.
The “Reset” button resets the number of repetitions completed by the listener to zero.

• Pre-Trial Silence (ms) Set a silent time interval before the start of each trial. Useful to
avoid that a new trial starts immediately after the listener has given his/her response.

• Warning Interval Choose whether to present a warning light at the beginning of each
trial.

• Warning Interval Duration (ms) Sets the duration of the warning interval light. This
widget is shown only if the warning interval chooser is set to “Yes”.

• Warning Interval ISI (ms) Sets the duration of the silent interval between the end of
warning interval and the start of the first observation interval. This widget is shown only
if the warning interval chooser is set to “Yes”.

• Response Light Set the kind of feedback to give to participants at the end of each trial.
“Feedback” will give feedback (e.g. flash a green, for a correct response, or red, for an
incorrect response light. “Neutral” will acknowledge that a responses has been given,
but will not give feedback as to whether the response was correct (e.g. flash a white
light). “None” will not give any feedback or acknowledgment that a response has been
given. (e.g. no light will be flashed, there will nonetheless be a silent interval equal to the
response light duration, see below).

3.2. The Control Window 8

pychoacoustics Documentation, Release 0.6.12

• Response Light Type Determines the mode in which feedback or acknoledgment of lis-
tener responses is given. If “Light”, a colored light will be flashed (e.g. a green light to
indicate a correct response, and a red light to indicate an incorrect response). If “Text”,
a string will be presented (e.g. “Correct!” for a correct response, and “Incorrect!” for
an incorrect response. If “Smiley”, a smiley will be painted in the response light box.
Combinations of these three basic feedback presentation modes are also possible.

• Response Light Duration (ms) Set the duration of the response light.

• Results File Select a file for saving the results. Selecting an existing file will never over-
write its content, it will simply append the new results to its content. If no file is selected,
the results will be saved in a file called test.txt in the current working directory. You
can select a file to save the results even after you have started a block of trials, the results
get written to the file only at the end of the block.

• Shuffle Mode If the “Shuffle Mode” is “auto”, the block presentation positions will be au-
tomatically shuffled at the beginning of a series of blocks. If the “Shuffle Mode” is “Ask”,
at the beginning of a series of blocks the user will be asked if the block presentation po-
sitions should be shuffled or not. If the “Shuffle Mode” is “No”, the block presentation
positions will not be automatically shuffled at the beginning of a series of blocks. See
Section Block Presentation Position for further information on shuffling the block pre-
sentation positions.

• Response Mode When “Real Listener” is selected, pychoacousticswaits for responses
from a human listener. When “Automatic” is selected the program will give responses by
itself with a certain percentage correct, that can be specified in the “Percent Correct (%)”
text field. This mode is mostly useful for debugging purposes, however it can also be
used for experiments in which the participants are passively listening to the stimuli (e.g.
some neuroimaging experiments that record cerebral responses rather than behavioural
responses). In “Simulated Listener” mode pychoacoustics will give responses on the
bases of an auditory model. This model needs to be specified in the experiment file, the
“Simulated Listener” mode provides just a hook to redirect the control flow to your model.
When the “Psychometric” listener mode is selected responses are given automatically
according to the shape of a psychometric function (see boxes below for specifying the
psychometric function shape). The “Psychometric” listener mode works only for adaptive
paradigms (e.g. tranformed up-down, weighted up-down, PEST, UML, PSI). Please, refer
to Section Response Mode for more information.

• Psychometric Listener Function The function family for the psychometric listener.
Currently supported functions are “Logistic”, “Gaussian” (normal), “Gumbel”, and
“Weibull”.

• Psychometric Listener Function Fit Whether the psychometric function is fitted on
“Linear” or “Logarithmic” coordinates. With the transformed up-down, PEST, and
weighted up-down paradigms you should choose “Logarithmic” if you’re using a geo-
metric adaptive procedure. With the PSI and UML paradigms you should choose “Loga-
rithmic” if your the stimulus scaling is set to “Logarithmic”.

• Psychometric Listener Midpoint The midpoint of the psychometric function, that is
the middle point between chance performance and maximum performance. For a two-
alternative forced choice task this will correspond to the point at which the listener

3.2. The Control Window 9

pychoacoustics Documentation, Release 0.6.12

achieves a 75% correct performance.

• Psychometric Listener Slope The slope of the psychometric function. Please note
that slopes measured with different psychometric function families (e.g. “Logistic” and
“Gaussian”) are not directly comparable.

• Psychometric Listener Lapse The lapse rate of the psychometric listener.

• Save psychometric listener data Save the psychometric listener data to a text file. The
first column of the saved file corresponds to the probability of a correct response. The sec-
ond column corresponds to the stimulus value at which the psychometric listener achieves
that probability of a correct response.

• Plot psychometric listener function Plot the psychometric function defined for the psy-
chometric listener.

3.2.2 Additional Widgets (left panel)

The following widgets are present only in some experiments:

• ISI (ms) Inter-stimulus silent interval, in ms.

• Intervals Set the number of observation intervals.

• Alternatives Set the number of response alternatives.

• Alternated (AB) Reps. This setting makes it possible to present stimuli with the ABAB
AAAA paradigm (see [KingEtAl2013]). If the value is set to zero, then on each interval
only one stimulus will be presented, either the standard (A), or the comparison (B) stim-
ulus. If the value is set to one, then the correct interval will contain the an alternation of
the standard and comparison stimuli (AB), while the incorrect interval will contain two
standards (AA). If the value is set to two, then the correct interval will contain two alter-
nations of the standard and comparison stimuli (ABAB) while the incorrect interval will
contain four repetitions of the standard and so on.

• Alternated (AB) Reps. ISI (ms) Set silent interval between stimuli presented within
each AAAA or ABAB interval.

• Pre-Trial Interval Choose whether to present the pre-trial interval.

• Pre-Trial Interval ISI (ms) Sets the duration of the silent interval between the end of pre-
trial interval and the start of the next interval. This widget is shown only if the pre-trial
interval chooser is set to “Yes”.

• Precursor Interval Choose whether to present the precursor interval.

• Precursor Interval ISI (ms) Sets the duration of the silent interval between the end of
precursor interval and the start of the next interval. This widget is shown only if the
precursor interval chooser is set to “Yes”.

• Postcursor Interval Choose whether to present the postcursor interval.

• Postcursor Interval ISI (ms) Sets the duration of the silent interval between the end of
postcursor interval and the start of the next interval. This widget is shown only if the
postcursor interval chooser is set to “Yes”.

3.2. The Control Window 10

pychoacoustics Documentation, Release 0.6.12

3.2.3 General Widgets (right panel)

• Load Prm Load in memory experimental parameters stored in a .prm file. See Section
Parameters Files for more info.

• Save Prm Save experimental parameters stored in memory in a .prm file. See Section
Parameters Files for more info.

• Delete Delete the current block from the list of blocks stored in memory.

• Undo Unsaved Reset the parameters in the current block to the parameters that were last
saved.

• Store Store the parameters changes in memory.

• Store ’n’ add Store the parameter changes in memory and add a new parameters block.

• Store ’n’ go Store the parameter changes in memory and move to the next block storage
point.

• New Block Create a new parameters block (the parameters of the current block will be
copied in the new one).

• Previous Move to the previous block storage point.

• Next Move to the next block storage point.

• Shuffle Shuffle the block presentation positions (see Block Presentation Position).

• Reset Reset the block presentation positions and move to the first block position (see
Block Presentation Position).

• Jump to Block Jump to a given block storage point.

• Previous Position Move to the previous block presentation position (see Block Presenta-
tion Position).

• Next Position Move to the next block presentation position (see Block Presentation Po-
sition).

• Jump to Position Jump to the given block presentation position (see Block Presentation
Position).

• Shift Blk. Down Shift the current block to a lower storage point.

• Shift Blk. Up Shift the current block to a higher storage point.

• Experiment Doc Show the available documentation for the current experiment.

3.2. The Control Window 11

pychoacoustics Documentation, Release 0.6.12

3.2.4 Paradigm Widgets

3.2.5 1-Pair Same/Different Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block.
Practice trials are presented at the beginning of the block; the responses to these trials are
not included in the statistics.

3.2.6 Constant 1-Interval 2-Alternatives Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block.
Practice trials are presented at the beginning of the block; the responses to these trials are
not included in the statistics.

3.2.7 Constant m-Intervals n-Alternatives Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block.
Practice trials are presented at the beginning of the block; the responses to these trials are
not included in the statistics.

3.2.8 Multiple Constants ABX Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block.
Practice trials are presented at the beginning of the block; the responses to these trials are
not included in the statistics.

• No. Differences Set the number of comparisons to perform.

3.2.9 Multiple Constants 1-Interval 2-Alternatives Paradigm Wid-
gets

• No. Trials Set the number of trials to be presented in the current block for each condition.

• No. Practice Trials Set the number of practice trials to be presented in the current block
for each condition. The responses to these trials are not included in the statistics.

• No. Differences Set the number of conditions to be used in the current block.

3.2. The Control Window 12

pychoacoustics Documentation, Release 0.6.12

3.2.10 Multiple Constants m-Intervals n-Alternatives Paradigm
Widgets

• No. Trials Set the number of trials to be presented in the current block for each condition.

• No. Practice Trials Set the number of practice trials to be presented in the current block
for each condition. The responses to these trials are not included in the statistics.

• No. Differences Set the number of conditions to be used in the current block.

3.2.11 Odd One Out Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block.
Practice trials are presented at the beginning of the block; the responses to these trials are
not included in the statistics.

• No. Differences Set the number of comparisons to perform.

3.2.12 PEST Paradigm Widgets

WARNING PEST support is experimental and has received very little testing!

• Procedure If “Arithmetic” the quantity defined by the step size will be added or sub-
tracted to the parameter that is adaptively changing. If “Geometric” the parameter that is
adaptively changing will be multiplied or divided by the quantity defined by the step size.

• Corr. Resp. Move Track This determines whether correct responses move the adap-
tive track down, or up. Choose down if you want the adaptive parameter to decrease as
a consequence of correct responses. Choose up if you want the adaptive parameter to
increase as a consequence of correct responses. For example, in a signal detection task
in which the signal level is varied you should choose Down (signal level decreases as a
consequence of correct responses). On the other hand, in a signal detection task in which
the noise level is varied you should choose Up (noise level increases as a consequence of
correct responses).

• Percent Correct Tracked Set the percentage correct point on the psychometric function
to be tracked by the adaptive procedure.

• Initial Step Size Set the initial step size.

• Minimum Step Size Set the minimum step size. When the minimum step size is reached
the block is terminated.

• Maximum Step Size Set the maximum allowed step size.

• W Deviation limit of the sequential test (see [TaylorAndCreelman1967]).

3.2. The Control Window 13

pychoacoustics Documentation, Release 0.6.12

3.2.13 PSI Paradigm Widgets

3.2.14 Transformed Up-Down Paradigm Widgets

• Procedure If Arithmetic the step size will be added or subtracted to the parameter
that is adaptively varied. If Geometric the parameter that is adaptively varied will be
multiplied or divided by the step size.

• Corr. Resp. Move Track This determines whether correct responses move the adap-
tive track down, or up. Choose down if you want the adaptive parameter to decrease as
a consequence of correct responses. Choose up if you want the adaptive parameter to
increase as a consequence of correct responses. For example, in a signal detection task
in which the signal level is varied you should choose Down (signal level decreases as a
consequence of correct responses). On the other hand, in a signal detection task in which
the noise level is varied you should choose Up (noise level increases as a consequence of
correct responses).

• Rule Down Set the number of consecutive correct, or incorrect responses, depending on
which type of responses move the track down, needed to make a step down.

• Rule Up Set the number of consecutive correct, or incorrect responses, depending on
which type of responses move the track up, needed to make a step up.

• Initial Turnpoints Set the number of initial turnpoints. The initial turnpoints serve to
bring quickly the adaptive track towards the listener’s threshold. These turnpoints are not
included in the threshold estimate.

• Total Turnpoints Set the number of total turnpoints. The number of total turnpoints is
equal to the number of initial turnpoints that are not included in the threshold estimate
plus the number of turnpoints that you want to use for the threshold estimate.

• Step Size 1 Set the step size for the initial turnpoints.

• Step Size 2 Set the step size to be used after the number of initial turnpoints has been
reached.

3.2.15 Transformed Up-Down Interleaved Paradigm Widgets

• Procedure If “Arithmetic” the quantity defined by the step size will be added or sub-
tracted to the parameter that is adaptively changing. If “Geometric” the parameter that is
adaptively changing will be multiplied or divided by the quantity defined by the step size.

• No. Tracks Set the number of adaptive tracks.

• Max. Consecutive Trials x Track Set the maximum number of consecutive trials per
track.

• Turnpoints to Average Since track selection is pseudo-random, it may happen that for a
track the number of total turnpoints collected is greater than the number of total turnpoints
requested for that track. If “All final step size (even)” is selected, the threshold will be
estimated using all the turnpoints collected after the initial turnpoints, unless the number
of these turnpoints is odd, in which case the first of these turnpoints will be discarded. If

3.2. The Control Window 14

pychoacoustics Documentation, Release 0.6.12

“First N final step size” is selected the threshold will be estimated using only the number
of requested turnpoints collected after the initial turnpoints. If “Last N final step size” is
selected the threshold will be estimated using only the last 𝑁 turnpoints, where 𝑁 equals
the number of requested turnpoints.

• Corr. Resp. Move Track X This determines whether correct responses move the adap-
tive track down, or up. Choose Down if you want the adaptive parameter to decrease as
a consequence of correct responses. Choose Up if you want the adaptive parameter to
increase as a consequence of correct responses. For example, in a signal detection task
in which the signal level is varied you should choose Down (signal level decreases as a
consequence of correct responses). On the other hand, in a signal detection task in which
the noise level is varied you should choose Up (noise level increases as a consequence of
correct responses).

• Rule Down Track X Set the number of consecutive correct responses needed to subtract
the current step size from the adaptive parameter (for arithmetic procedures) or divide the
adaptive parameter by the current step size (for geometric procedures) for track number
𝑋 .

• Rule Up Track X Set the number of consecutive correct, or incorrect responses, depend-
ing on which type of responses move track X down, needed to make a step down for track
X.

• Initial Turnpoints Track X Set the number of consecutive correct, or incorrect responses,
depending on which type of responses move track X up, needed to make a step up for track
X.

• Total Turnpoints Track X Set the number of total turnpoints for track number 𝑋 . The
number of total turnpoints is equal to the number of initial turnpoints that are not in-
cluded in the threshold estimate plus the number of turnpoints that you want to use for the
threshold estimate.

• Step Size 1 Track X Set the step size for the initial turnpoints for track number 𝑋 .

• Step Size 2 Track X Set the step size to be used after the number of initial turnpoints has
been reached for track number 𝑋 .

3.2.16 UML Paradigm Widgets

• Psychometric Function The shape of the psychometric function used to fit the responses
of the listener.

• Posterior Summary Choose whether to use the mean or the mode for the estimation

of parameter values from the Bayesian posterior distribution of parameter values.

• Plot UML Par. Space Generate a graphical summary of the parameter space used to

initialize the UML procedure.

• No. Trials Set the number of trials to be presented in the current block.

• Swpt. Rule Choose whether to use an up-down or a random sweetpoint selection rule.

3.2. The Control Window 15

pychoacoustics Documentation, Release 0.6.12

• Rule Down The number of consecutive correct responses necessary to move to the lower
sweetpoint.

• Stim. Min Set the minimum value of the stimulus dimension that is being varied adap-
tively (e.g. signal level, or frequency difference).

• Stim. Max Set the maximum value of the stimulus dimension that is being varied adap-
tively (e.g. signal level, or frequency difference).

• Stim. Scaling Indicate whether the stimulus dimension that is being varied adaptively
should be scaled linearly or logarithmically. The

• Suggested Lapse Swpt. The suggested stimulus value for the lapse rate sweetpoint. This
value is used as the lapse rate sweetpoint unless the current estimate of the psychomet-
ric function at the probability value Pr. Corr. at Est. Lapse Swpt (see below) is
larger. In the latter case the current estimate of the psychometric function at the proba-
bility value Pr. Corr. at Est. Lapse Swpt is used as the lapse rate sweetpoint, as
long as it is smaller than Stim. Max, in which case Stim. Max will be used as the lapse
rate sweet point.

• Pr. Corr. at Est. Lapse Swpt. The proportion correct at the estimated lapse sweet point.
If the estimated lapse sweetpoint exceeds the will be used the suggested lapse sweetpoint,
the estimated lapse sweetpoint will be used as the lapse rate sweetpoint.

• Mid Point Min The minimum possible value of the midpoint of the psychometric func-
tion.

• Mid Point Max The maximum possible value of the midpoint of the psychometric func-
tion.

• Mid Point Step The size of the step between successive points in the grid defining the
parameter space for the midpoint of the psychometric function.

• Mid Point Prior The shape of the prior distribution for the midpoint of the psychometric
function.

• Mid Point mu The mean of the prior distribution for the midpoint of the psychometric
function.

• Mid Point STD The standard deviation of the prior distribution for the midpoint of the
psychometric function.

• Slope Min The minimum possible value of the slope of the psychometric function.

• Slope Max The maximum possible value of the slope of the psychometric function.

• Slope Step The size of the step between successive points in the grid defining the param-
eter space for the slope of the psychometric function.

• Slope Spacing Indicate whether the spacing between successive points in the grid defin-
ing the parameter space for the slope of the psychometric function should be linear or
logarithmic.

• Slope Prior The shape of the prior distribution for the slope of the psychometric function.

• Slope mu The mean of the prior distribution for the slope of the psychometric function.

3.2. The Control Window 16

pychoacoustics Documentation, Release 0.6.12

• Slope STD The standard deviation of the prior distribution for the slope of the psycho-
metric function.

• Lapse Min The minimum possible value of the lapse rate of the psychometric function.

• Lapse Max The maximum possible value of the lapse rate of the psychometric function.

• Lapse Step The size of the step between successive points in the grid defining the param-
eter space for the lapse rate of the psychometric function.

• Lapse Spacing Indicate whether the spacing between successive points in the grid defin-
ing the parameter space for the lapse rate of the psychometric function should be linear
or logarithmic.

• Lapse Prior The shape of the prior distribution for the lapse rate of the psychometric
function.

• Lapse mu The mean of the prior distribution for the lapse rate of the psychometric func-
tion.

• Lapse STD The standard deviation of the prior distribution for the lapse rate of the psy-
chometric function.

• Load UML state from prev. blocks If Yes, at the end of each block the state of the UML
posterior parameter distribution will be saved in a file named after the condition label of
the block. When a subsequent block with the same condition label is encountered this file
will be used to set the initial UML posterior parameter distribution for the block instead
of the priors specified in the control window.

3.2.17 Weighted Up-Down Paradigm Widgets

• Procedure If “Arithmetic” the quantity defined by the step size will be added or sub-
tracted to the parameter that is adaptively changing. If “Geometric” the parameter that is
adaptively changing will be multiplied or divided by the quantity defined by the step size.

• Corr. Resp. Move Track This determines whether correct responses move the adap-
tive track down, or up. Choose down if you want the adaptive parameter to decrease as
a consequence of correct responses. Choose up if you want the adaptive parameter to
increase as a consequence of correct responses. For example, in a signal detection task
in which the signal level is varied you should choose Down (signal level decreases as a
consequence of correct responses). On the other hand, in a signal detection task in which
the noise level is varied you should choose Up (noise level increases as a consequence of
correct responses).

• Percent Correct Tracked Set the percentage correct point on the psychometric func-
tion to be tracked by the adaptive procedure. The ratio of the “Up” and “Down” steps is
automatically adjusted by the software to satisfy this criterion.

• Initial Turnpoints Set the number of initial turnpoints. The initial turnpoints serve to
bring quickly the adaptive track towards the listener’s threshold. These turnpoints are not
included in the threshold estimate.

3.2. The Control Window 17

pychoacoustics Documentation, Release 0.6.12

• Total Turnpoints Set the number of total turnpoints. The number of total turnpoints is
equal to the number of initial turnpoints that are not included in the threshold estimate
plus the number of turnpoints that you want to use for the threshold estimate.

• Step Size 1 Set the “Down” step size for the initial turnpoints. The “Up” step size is
automatically calculated to satisfy the “Percent Correct Tracked” criterion.

• Step Size 2 Set the “Down” step size to be used after the number of initial turnpoints
has been reached. The “Up” step size is automatically calculated to satisfy the “Percent
Correct Tracked” criterion.

3.2.18 Weighted Up-Down Interleaved Paradigm Widgets

• Procedure If “Arithmetic” the quantity defined by the step size will be added or sub-
tracted to the parameter that is adaptively changing. If “Geometric” the parameter that is
adaptively changing will be multiplied or divided by the quantity defined by the step size.

• No. Tracks Set the number of adaptive tracks.

• Max. Consecutive Trials x Track Set the maximum number of consecutive trials per
track.

• Turnpoints to Average Since track selection is pseudo-random, it may happen that for a
track the number of total turnpoints collected is greater than the number of total turnpoints
requested for that track. If “All final step size (even)” is selected, the threshold will be
estimated using all the turnpoints collected after the initial turnpoints, unless the number
of these turnpoints is odd, in which case the first of these turnpoints will be discarded. If
“First N final step size” is selected the threshold will be estimated using only the number
of requested turnpoints collected after the initial turnpoints. If “Last N final step size” is
selected the threshold will be estimated using only the last 𝑁 turnpoints, where 𝑁 equals
the number of requested turnpoints.

• Corr. Resp. Move Track X This determines whether correct responses move the adap-
tive track number X down, or up. Choose Down if you want the adaptive parameter to
decrease as a consequence of correct responses. Choose Up if you want the adaptive
parameter to increase as a consequence of correct responses. For example, in a signal
detection task in which the signal level is varied you should choose Down (signal level de-
creases as a consequence of correct responses). On the other hand, in a signal detection
task in which the noise level is varied you should choose Up (noise level increases as a
consequence of correct responses).

• Percent Correct Tracked Set the percentage correct point on the psychometric function
to be tracked by the adaptive procedure for track number 𝑋 . The ratio of the “Up” and
“Down” steps is automatically adjusted by the software to satisfy this criterion.

• Initial Turnpoints Track X Set the number of initial turnpoints for track number 𝑋 . The
initial turnpoints serve to bring quickly the adaptive track towards the listener’s threshold.
These turnpoints are not included in the threshold estimate.

• Total Turnpoints Track X Set the number of total turnpoints for track number 𝑋 . The
number of total turnpoints is equal to the number of initial turnpoints that are not in-

3.2. The Control Window 18

pychoacoustics Documentation, Release 0.6.12

cluded in the threshold estimate plus the number of turnpoints that you want to use for the
threshold estimate.

• Step Size 1 Track X Set the “Down” step size for the initial turnpoints for track number
𝑋 . The “Up” step size is automatically calculated to satisfy the “Percent Correct Tracked”
criterion.

• Step Size 2 Track X Set the “Down” step size to be used after the number of initial
turnpoints has been reached for track number 𝑋 . The “Up” step size is automatically
calculated to satisfy the “Percent Correct Tracked” criterion.

3.2.19 The Menu Bar

A screenshot of the menu bar is shown in Figure The menu bar. This bar is located in the upper
left corner of the “Control Window”. Each menu will be described below.

Fig. 1: The menu bar

3.2.20 The File Menu

• Process Results (Plain Text) Process block summary results files to obtain session sum-
mary results files. For more info see Section Process Results Dialog.

• Process Results Table Process block summary results table files to obtain session sum-
mary table results files. For more info see Section Process Results Dialog.

• Open Results File Open the file where pychoacoustics is currently saving data with
the default text editor.

• Exit Close pychoacoustics.

3.2.21 The Edit Menu

• Edit Preferences Edit application preferences. See Section Edit Preferences Dialog for
further info.

• Edit Phones Edit the phones database, and set the calibration levels for your phones. See
Section Edit Phones Dialog for further info.

• Edit Experimenters Edit the experimenters database. See Section Edit Experimenters
Dialog for further info.

3.2. The Control Window 19

pychoacoustics Documentation, Release 0.6.12

3.2.22 The Tools Menu

• Swap Blocks Swap the storage position of two parameter blocks.

3.2.23 The Help Menu

• Manual (pdf) Open a pdf copy of the manual.

• Manual (html) Open a html copy of the manual.

• Fortunes Show psychoacoustics fortunes. I’m always collecting new ones, so if you hap-
pen to know any interesting ones, please, e-mail them to me <sam.carcagno@gmail.com>
so that I can add them to the collection.

• About pychoacoustics Show information about the licence, the version of the software
and the version of the libraries it depends on.

3.2.24 The “what’s this?” Button.

If you click on this button, and then click on a widget, you can get some information about the
widget (this is not implemented for all widgets).

3.3 Process Results Dialog

Figure The process results dialog show a screenshot of the process results dialog. The dialog
is the same for all procedures, except that for procedures in which d’ is computed, there is
an additional checkbox asking whether to apply a correction to hit/false alarm rates of zero or
one. For information on the format of the result files, please see Section Result Files. For tabular
results files, if both matplotlib and pandas are installed there are additional checkboxes allowing
to plot the results in a window or on a pdf file. Not all experimental paradigms support plotting.

• Input File(s) Give the filepath of one or more files to be processed. The “Choose File”
button can be used to select the file(s). Multiple filepaths should be separated by a semi-
colon “;”.

• Output File Give the filename of the output file.

• For each condition process:
– All Blocks If checked, all blocks in the result file(s) will be processd.

– Last X Blocks If checked, only the last 𝑋 blocks will be processed.

– Blocks in the following range If checked, only blocks in the specified range will be
processed (indexing starts from 1).

• d-prime correction If checked, convert hit rates of 0 and 1 to 1/2𝑁 and 1 − 1/(2𝑁)
respectively, where 𝑁 is the number of trials, to avoid infinite values of d’ (see
[MacmillanAndCreelman2005] p. 8). This checkbox is available only for some
paradigms.

3.3. Process Results Dialog 20

mailto:sam.carcagno@gmail.com

pychoacoustics Documentation, Release 0.6.12

Fig. 2: The process results dialog

• When finished, open results file If checked, the output file will be opened in the default
text editor when processing has finished.

• When finished, open results folder If checked, the folder containing the output file will
be opened when processing has finished.

• Run! Click this button to process the result files.

3.4 Edit Preferences Dialog

The preferences dialog is divided into several tabs. These are described in turn
below.

3.4.1 General

• Language (requires restart) Choose the application language. At the moment and for
the foreseeable future only English is supported.

• Country (requires restart) Set the country locale to be used for the application. Some
things (for example the way dates are written in result files) depend on this setting.

• Response Box Language (requires restart) Choose the language to be used for the “Re-
sponse Box”. This sets the language to be used for the button labels and other GUI ele-
ments that the experimental listener is presented with.

• Response Box Country (requires restart) Set the country locale for the response box.

3.4. Edit Preferences Dialog 21

pychoacoustics Documentation, Release 0.6.12

• csv separator Choose the separator field to be used when writing the csv tabular result
files.

• Warn if listener name missing If checked, pop up a warning message if the listener name
is missing at the beginning of a session.

• Warning if session label missing If checked, pop up a warning message if the session
label is missing at the beginning of a session.

• Process results when finished If checked, process automatically the block summary file
to generate the session summary file at the end of the experiment.

• d-prime correction If checked, when automatically processing result files, convert hit
rates of 0 and 1 to 1/2𝑁 and 1 − 1/(2𝑁) respectively, where 𝑁 is the number of trials,
to avoid infinite values of d’ (see [MacmillanAndCreelman2005] p. 8).

• Max Recursion Depth (requires restart) Set the maximum recursion depth of the
Python interpreter stack. This setting should be changed only if you intend to run
pychoacoustics in automatic or simulated listener response mode (see Response
Mode). Beware, setting a max recursion depth value smaller than the default value may
cause pychoacoustics to crash or not even start. In case pychoacoustics does not
start because of this, delete your preferences settings file to restore the default max recur-
sion depth value.

• Execute command at startup Executes an OS command at startup. May be useful to
initialize a soundcard in certain situations.

3.4.2 Sound

• Play Command Set an internal or external command to play sounds.

• Device Set the soundcard to be used to play sounds. This chooser is available only for
certain internal play commands (currently alsaaudio and pyaudio).

• Buffer Size (samples) Set the buffer size in number of samples to be used to output
sounds. This chooser is available only for certain internal play commands (currently al-
saaudio and pyaudio).

• Default Sampling Rate Set the default sampling rate.

• Default Bits Set the default bit depth.

• Wav manager (requires restart) Choose the wav manager.

• Write wav file Write wav files with the sounds played on each trial in the current
pychoacoustics working directory.

• Write sound sequence segment wavs For sound sequences, write a wav file for each
segment of the sequence in the current pychoacoustics working directory.

• Append silence to each sound (ms) Append a silence of the given duration at the end of
each sound. This is useful on some versions of the Windows operating system that may
cut the sound buffer before it has ended resulting in audible clicks.

3.4. Edit Preferences Dialog 22

pychoacoustics Documentation, Release 0.6.12

3.4.3 Response Box

• Response Box Button Font Choose the font for the response box button.

• Correct Light Color Choose the color of the feedback light after a correct response.

• Incorrect Light Color Choose the color of the feedback light after an incorrect response.

• Neutral Light Color Choose the color of the feedback light when specific feedback as to
the correctness of the response is not given. A light is instead simply flashed to acknowl-
edge that the response has been recorded.

• Off Light Color Choose the color of the response light when the response light is off
(that is when feedback of any kind is not being given.

• Response Light Font Choose the font of used to present text in the response light area
when feedback is textual.

• Correct Response Text Feedback Choose the feedback text to show in case of a correct
response. If left to (Default), a default message will be shown in the language chosen
for the response box (if available). Applies only if feedback is textual.

• Incorrect Response Text Feedback Choose the feedback text to show in case of an in-
correct response. If left to (Default), a default message will be shown in the language
chosen for response box (if available). Applies only if feedback is textual.

• Neutral Response Text Feedback Choose the feedback text to show when specific feed-
back as to the correctness of the response is not given. If left to (Default), a default
message will be shown in the language chosen for response box (if available). Applies
only if feedback is textual.

• Correct Text Color Choose the color of the feedback text to show in case of a correct
response. Applies only if feedback is textual.

• Incorrect Response Text Feedback Choose the color of the feedback text to show in case
of an incorrect response. Applies only if feedback is textual.

• Neutral Response Text Feedback Choose the color of the feedback text to show when
specific feedback as to the correctness of the response is not given. Applies only if feed-
back is textual.

3.4.4 Notifications

• Play End Message If checked, play a wav file at the end of the experiment. This could
be short message to let the listeners know they have finished and thank them for their
participation in the experiment. One or more wav files need to be set through the “Choose
wav” button for this work.

• Choose wav Choose the wav file to be played as the end message. Clicking on this button
brings up another dialog where you can select the wav files to be played and their output
RMS. Only one of the wav files listed here and with the “Use” flag set to will be randomly
chosen and played.

3.4. Edit Preferences Dialog 23

pychoacoustics Documentation, Release 0.6.12

• blocks before end of experiment Set how many blocks before the end of the experi-
ment the two actions listed below (send notification e-mail and execute custom command)
should be performed.

• Send notification e-mail If checked, send a notification e-mail to the experimenter to
notify her that the experiment is about to finish.

• Execute custom command If checked, execute an operating system command before the
end of the experiment. This command could be used to automatically send an sms for
example.

• Send data via e-mail At the end of the experiment, send the results file to the experimenter
.

• Execute custom command At the end of the experiment, execute an operating system
command.

• Outgoing Server (SMTP) Set the name of the SMTP server to be used by
pychoacoustics to send e-mails.

• Port Set the port number for the SMTP server.

• Security Set the security protocol for network exchanges with the SMTP server.

• Server requires identification Check this if the SMTP server requires identification.

• Username Set the username for the SMTP server.

• Password Set the password for the SMTP server.

• Send test e-mail Send a test e-mail to check that the server settings are OK.

3.4.5 EEG

• ON Trigger The ON trigger value (decimal).

• OFF Trigger The OFF trigger value (decimal).

• Trigger Duration (ms) The duration of the trigger in milliseconds.

3.5 Edit Phones Dialog

A screenshot of the “Edit Phones” dialog is

shown in Figure Edit Phones Dialog.

Most of the fields should be pretty much self-explanatory. Using this dialog you can add head-
phones/earphones models to the phones database. The phone with the “Default” flag set will
be selected by default when pychoacoustics is started. In the “Max Level” field you should
enter the level in dB SPL that is output by the phone for a full amplitude sinusoid (a sinusoid
with a peak amplitude of 1). This value will be used by pychoacoustics to output sounds
at specific levels in dB SPL. On the rightmost panel of the dialog you have facilities to play
a sinusoid with a specified level. You can use these facilities to check with a SPL meter (or

3.5. Edit Phones Dialog 24

pychoacoustics Documentation, Release 0.6.12

Fig. 3: Edit Phones Dialog

a voltmeter depending on how you’re doing it) that the actual output level corresponds to the
desired output level. Using these facilities you can also play a full amplitude sinusoid: you need
to set the level of the sinuoid to the “Max Level” of the phone in the dialog (whatever it is). Be
careful because it can be very loud! More detailed instructions on the calibration procedure are
provided below.

3.5.1 Calibrating with an SPL meter

Open the “Edit Phones” dialog. Select the phone for which you want to calibrate and note
its MaxLevel (by default this is set to 100 dB SPL). Use the rightmost panel to play a 1-kHz
sinusoid at the MaxLevel (e.g. 100 dB), and read the measurement on the SPL meter. Change
the MaxLevel for the phone to the measurement you just read on the SPL meter.

You don’t actually need to play the sinusoid at the MaxLevel (and it may be better not to do so
because you may get distortions at very high levels). Instead, you could for example play it at
a level equal to MaxLevel - 20. The reading that you would obtain from the SPL meter would
then be 20 dB below the MaxLevel. You would then simply add 20 to the SPL meter reading
and set MaxLevel to this value.

3.5.2 Calibrating with a voltmeter

Open the “Edit Phones” dialog. Select the phone for which you want to calibrate and note
its MaxLevel (by default this is set to 100 dB SPL). Use the rightmost panel to play a 1-kHz
sinusoid at the MaxLevel (e.g. 100 dB), and note the RMS voltage reading from a voltmeter
connected to a cable receiving input from the soundcard. Manufacturers of professional phones
usually provide datasheets indicating what is the dB SPL level output by the phone when it is
driven by a 1-volt RMS sinusoid at 1 kHz. You can use this figure to calculate what the dB SPL
output is for the 1-kHz sinusoid. Suppose that the dB SPL output for a 1-volt RMS sinusoid at 1

3.5. Edit Phones Dialog 25

pychoacoustics Documentation, Release 0.6.12

kHz is 𝐿𝑟, and the voltage output for the sinusoid played at MaxLevel is 𝑉𝑥, the dB SPL output
for the sinusoid (𝐿𝑥) will be:

𝐿𝑥 = 𝐿𝑟 + 20𝑙𝑜𝑔10(𝑉𝑥)

if the reference RMS voltage in the datasheet is not 1 but some other value 𝑉𝑟, 𝐿𝑥 can be calcu-
lated as:

𝐿𝑥 = 𝐿𝑟 + 20𝑙𝑜𝑔10(𝑉𝑥/𝑉𝑟)

Finally, set the MaxLevel for the phone you’re calibrating to 𝐿𝑥. As for the SPL meter calibra-
tion you do not actually need to play the sinusoid at the MaxLevel (and it may be better not to
do so because you may get distortions at very high levels). Instead, you could for example play
it at a level equal to MaxLevel - 20. You would then add back the 20 dBs in the equation to
compute 𝐿𝑥:

𝐿𝑥 = 𝐿𝑟 + 20𝑙𝑜𝑔10(𝑉𝑥) + 20

3.6 Edit Experimenters Dialog

A screenshot of the “Edit Experimenters” dialog is shown in Figure Edit Experimenters Dialog.

Fig. 4: Edit Experimenters Dialog

Most of the fields should be pretty much self-explanatory. Here you can add the details of
the experimenters that work in your lab in the experimenter database. The main functions
of this database at the moment are a) writing the experimenter name in the results file; b)
using the experimenter e-mail for sending notifications and/or results files (see Section sec-
edit_pref_dia_notifications).

3.6. Edit Experimenters Dialog 26

pychoacoustics Documentation, Release 0.6.12

3.7 The Response Box

The “response box” consists of a large button (the “status button”) that is used to start a block
of trials, a feedback light to display trial by trial feedback, interval lights to mark observation
intervals, and response buttons. The responses can be given either by means of mouse clicks,
or using the numeric keypad (key “1” for the first button, key “2” for the second button etc. . .).
Responses given before all observation intervals have been presented are not accepted.

The status button can be activated by pressing the Ctrl+R shortcut. At the start of each block
the label of the “Status Button” is set to “Start”. Once the listener starts a block of trials the
label of the status button changes to “Running”. When a whole series of blocks is finished the
label of the status button changes to “Finish”. If no blocks are stored in memory the label of the
status button is set to “Wait”.

On the top left corner of the response box there is a semi-hidden menu signalled by a little hyphen
(“-”). If you click on it you have access to two functions. The “Show/Hide Control Window”
function can be used to hide the control window while the experiment is running. This is useful
because it prevents the listener from accidentally changing your experimental parameters or
accidentally closing pychoacoustics (the response box itself has no “close” button, so it is
not possible to close that). The “Show/Hide progress Bar” function can be used to display a
progress bar at the bottom of the response box. The progress bar estimates what percentage of
the experiment has been completed. This estimate depends on the procedure used (for constant
procedures it is based on the number of trials done, while for adaptive procedures it is based on
the number of turnpoints reached) and on the specific parameters of a given experiment (trial
duration, number of trials, or number or turnpoints, all of which can differ between blocks), so
in some cases the estimate can be off the mark. The “Show/Hide block progress Bar” can be
used to show the position of the current block and the total number of blocks.

3.7. The Response Box 27

4
Command Line User Interface

In order to automate certain tasks, or perform some advanced operations, pychoacoustics can
be called from the command line with a number of command line options. The list of possible
command line options is shown below:

• -h, --help Show help message.

• -f, --file FILE Load parameters file FILE.

• -r, --results FILE Save the results to file FILE.

• -l, --listener LISTENER Set listener label to LISTENER.

• -s, --session SESSION Set session label to SESSION.

• -c, --conceal Hide Control and Parameters Windows.

• -p, --progbar Show the progress bar.

• -b, --blockprogbar Show the progress bar.

• -q, --quit Quit after finished.

• -a, --autostart Automatically start the first stored block.

• -k, --reset Reset block positions.

• -z, --seed Set random seed.

• -x, --recursion-depth Set the maximum recursion depth (this overrides the maxi-
mum recursion depth set in the preferences window).

• -g, --graphicssystem sets the backend to be used for on-screen widgets and
QPixmaps. Available options are raster and opengl.

• -d, --display This option is only valid for X11 and sets the X display (default is $DIS-
PLAY).

each command line option has a short (single dash, one letter) and long (double dash, one word)
form, for example to show the help message, you can use either of the two following commands:

28

pychoacoustics Documentation, Release 0.6.12

$ pychoacoustics -h
$ pychoacoustics --help

29

5
Paradigms

Todo: Give better description of the available paradigms.

5.1 Available Paradigms

5.1.1 Transformed Up-Down

This paradigm implements the transformed up-down adaptive procedures described by
[Levitt1971]. It can be used with 𝑛-intervals, 𝑛-alternatives forced choice tasks, in which 𝑛− 1
“standard” stimuli and a single “comparison” stimulus are presented, each in a different tem-
poral interval. The order of the intervals is randomized from trial to trial. The “comparison”
stimulus usually differs from the “standard” stimuli for a single characteristic (e.g. pitch or loud-
ness), and the listener has to tell in which temporal interval it was presented. A classical example
is the 2-intervals 2-alternatives forced-choice task. Tasks that present a reference stimulus in
the first interval, and therefore have 𝑛 intervals and 𝑛 − 1 alternatives are also supported (see
[GrimaultEtAl2002] for an example of such tasks)

30

pychoacoustics Documentation, Release 0.6.12

5.1.2 Transformed Up-Down Interleaved

This paradigm implements the interleaved transformed up-down procedure described by
[Jesteadt1980] .

5.1.3 Weighted Up-Down

This paradigm implements the weighted up-down adaptive procedure described by
[Kaernbach1991].

5.1.4 Weighted Up-Down Interleaved

This paradigm combines the interleaved procedure described by [Jesteadt1980] with the
weighted up-down method described by [Kaernbach1991].

5.1.5 Constant m-Intervals n-Alternatives

This paradigm implements a constant difference method for forced choice tasks with𝑚-intervals
and 𝑛-alternatives. For example, it can be used for running a 2-intervals, 2-alternatives forced-
choice frequency-discrimination task with a constant difference between the stimuli in the stan-
dard and comparison intervals.

5.1.6 Constant 1-Interval 2-Alternatives

This paradigm implements a constant difference method for tasks with a single observation
interval and two response alternatives, such as the “Yes/No” signal detection task.

5.1.7 Constant 1-Pair Same/Different

This paradigm implements a constant difference method for “same/different” tasks with a single
pair of stimuli to compare.

5.1.8 Multiple Constants 1-Pair Same/Different

This paradigm implements a constant difference method for “same/different” tasks with multiple
pairs of stimuli to compare.

5.1. Available Paradigms 31

pychoacoustics Documentation, Release 0.6.12

5.1.9 Multiple Constants ABX

This paradigm implements a constant difference method for “ABX” tasks with multiple pairs of
stimuli to compare.

5.1.10 Odd One Out

This paradigm implements a three-alternatives oddity procedure (see [VersfeldEtAl1996]).

5.1.11 PEST

This paradigm implements the PEST adaptive procedure described by
[TaylorAndCreelman1967]. However, beware that support for this procedure in
pychoacoustics is very experimental. Its implementation has received very little test-
ing.

5.1.12 PSI

This paradigm implements the PSI+ and PSI-marginal adaptive procedures described by
[Prins2013].

5.1.13 UML

This paradigm implements the updated maximum likelihood (UML) adaptive procedure de-
scribed by [ShenAndRichards2012].

5.1. Available Paradigms 32

6
Result Files

pychoacoustics outputs several types of result files, these are listed in Table List of result files
produced by pychoacoustics

Table 1: List of result files produced by pychoacoustics

Type Example Formatting Suffix
Block summary myres.txt Plain “.txt”
Trial summary myres_trial.txt Plain “_trial.txt”
Session Summary myres_sess.txt Plain “_sess.txt”
Tabular Block Summary myres_table.csv Tabular “_table.csv”
Tabular Trial Summary myres_table_trial.csv Tabular “_table_trial.csv”
Tabular Session Summary myres_table_sess.csv Tabular “_table_sess.csv”

there are both “plain text” and “tabular” versions of result files. The plain text version stores
along with the results each parameter that was used during the experiment. The tabular result
files on the other hand store a smaller number of parameters, although additional parameters
can be stored if the experimenter wishes to do so (see Tabular Results Files). An important ad-
vantage of tabular result files is that they are easy to import in other software (e.g. R, Libreoffice
Calc) for data analysis.

The plain-text “block-summary” and tabular “block-summary” result files contain summaries
for each experimental block that was run. The plain-text “trial-summary” and tabular “trial-
summary” result files instead contain information on each single trial. The “block-summary” re-
sult files (either in plain or tabular format) can be usually processed to obtain “session-summary”
files. The “session-summary” files contain summaries for an entire experimental session. In
these files the results are averaged across different blocks that have exactly the same stored pa-
rameters.

In order to obtain the session-summary files you need to use the appropriate functions that can
be accessed from the pychoacoustics “File” menu. Alternatively, you can check the “Proc.
Res.” and “Proc. Res. Table” checkboxes in the control window (see General Widgets (left
panel)) to let pychoacoustics automatically process these files at the end of an experimental
session. If processing the result files manually, choose “Process Results (Plain Text)” from the
“File” menu, to convert a block-summary file into a session-summary file. Choose “Process

33

pychoacoustics Documentation, Release 0.6.12

Results Table” to convert a tabular block-summary file into a tabular session summary file.
You can choose to process all blocks present in the file (default action), the last 𝑛 blocks (of
each condition), or a range of blocks (for each condition). Once you have selected the file to
process and specified the blocks to process you can click “Run!” to perform the processing. The
functions that process the block-summary files also allow you to plot the results. Please, note
that both the ability to process the block-summary files and plot the results are not available
for all paradigms. A list of the result files processing and plotting facilities available for each
paradigm is given in Table Process results and plot facilities for various paradigms

Table 2: Process results and plot facilities for various
paradigms

Procedure Proc. Res. Proc. Res. Table Plot
Constant 1-Interval 2-Alternatives Yes Yes Yes
Constant 1-Pair Same/Different Yes Yes Yes
Constant m-Intervals n-Alternatives Yes Yes Yes
Multiple Constants ABX Yes Yes Yes
Multiple Constants 1-Interval 2-Alternatives Yes Yes Yes
Multiple Constants 1-Pair Same/Different Yes Yes Yes
Multiple Constants m-Intervals n-Alternatives Yes Yes Yes
Multiple Constants Odd One Out No Yes No
Multiple Constants Sound Comparison No No No
PEST Yes Yes Yes
PSI No No No
Transformed Up-Down Yes Yes Yes
Transformed Up-Down Interleaved Yes Yes Yes
UML No No No
Weighted Up-Down Yes Yes Yes
Weighted Up-Down Interleaved Yes Yes Yes

6.1 Tabular Results Files

The tabular results files are comma separated value (CSV) text files that can be opened in a
text file editor or a spreadsheet application. The separator used by default is the semicolon
“;”, but another separator can be specified in the pychoacoustics preferences window. When
processing block-summary table files, make sure that the csv separator in the “Process Results
Table” window matches the separator used in the file.

The tabular result files contain three sets of columns:

• paradigm-specific columns (e.g. threshold estimate, for the transformed up-down proce-
dure, or d’ for the constant 1-pair same/different procedure). The columns that are specific
to each paradigm will be described in Section Result Files by Paradigm

• fixed columns that are common to all paradigms (e.g. date and time at which a block of
trials started). Among these columns there is a “condition” column, where the “condi-
tion label” is written (see General Widgets (left panel)). It is a good practice to assign

6.1. Tabular Results Files 34

pychoacoustics Documentation, Release 0.6.12

a condition label as it makes it easy to sort the results as a function of the experimental
condition.

• additional user-defined columns specific to each experiment

The way in which these additional user-defined columns are stored is as follows: Several text
fields and choosers in pychoacoustics have what we will call inSummary check boxes. Some
of these are shown marked by ellipses in Figure inSummary check boxes.

Fig. 1: inSummary check boxes

In the example shown in Figure inSummary check boxes the frequency, level and ear parameters
will be stored, each in a separate column, in the tabular block-summary file, while the parameters
corresponding to the unchecked boxes (duration, ramps and type) will be not. This is useful if
you are running an experiment in which you are systematically varying only a few parameters
across different blocks, and want to keep track of only those parameters. The inSummary check
boxes also provide visual landmarks for quickly spotting the widgets with your parameters of
interest in pychoacoustics.

Notice that the “Process Results Table” function, as mentioned in the previous section, will av-
erage the results for blocks with the same parameters stored in the tabular block-summary file.
This means that if you are varying a certain parameter (e.g., level) across blocks, but you don’t
check the corresponding inSummary check box (for each block), the value of the parameter
will not be stored in the tabular block-summary file, and as a consequence the “Process Re-
sults Table” function will not be able to sort the blocks according to the “level” parameter, and
will average the results across all blocks. Not all is lost because the “level” parameter will be
nonetheless stored in the “block-summary” plain-text file, but you will need more work before
you can process your results with a statistical software package.

Figure Transformed up-down table block-summary result file shows a table block-summary re-
sult file from a transformed up-down procedure opened in Libreoffice Calc.

Fig. 2: Transformed up-down table block-summary result file

the first two columns (“threshold geometric”, and “SD”) are specific to the transformed up-down
procedure. The set of fixed columns that are common to all paradigms is described below:

• condition the the “condition label” for the block (see General Widgets (left panel))

• listener the listener identifier (see General Widgets (left panel))

6.1. Tabular Results Files 35

pychoacoustics Documentation, Release 0.6.12

• session the session identifier (see General Widgets (left panel))

• experimentLabel the label assigned to the current experiment (see General Widgets (left
panel))

• date the date (DD/MM/YYYY) at which the block started

• time the time at which the block started

• duration how long it took for the listener to complete the block, in seconds

• block the block presentation position

• experiment the name of the experiment that was run

• paradigm the paradigm with which the experiment was run

The tabular trial-summary result files contain information on each single trial. For example
for the transformed up-down paradigm they record the response (1 for correct, 0 for incorrect),
and the value of the adaptive difference (the variable that is being varied adaptively to find its
threshold). This trial by trial information can be used for various purposes, for example, it can
be used to fit psychometric functions from the results of adaptive procedures.

The tabular result files contain four sets of columns:

• paradigm-specific columns (e.g. threshold estimate, for the transformed up-down proce-
dure, or d’ for the constant 1-pair same/different procedure). The columns that are specific
to each paradigm will be described in Section Result Files by Paradigm

• experiment-specific columns, for example a frequency discrimination task with roving
frequency of the standard may store the value of the standard frequency on each trial

• fixed columns that are common to all paradigms (e.g. date and time at which a block of
trials started). Among these columns there is a “condition” column, where the “condi-
tion label” is written (see General Widgets (left panel)). It is a good practice to assign
a condition label as it makes it easy to sort the results as a function of the experimental
condition.

• additional user-defined columns specific to each experiment

Todo: For the experiment-specific column in tabular trial-summary files, make reference to
prm[‘additional_parameters_to_write’] when it will be explained in the writing your own ex-
periments section

6.1. Tabular Results Files 36

pychoacoustics Documentation, Release 0.6.12

6.2 Plain-Text Result Files

The “block-summary” result and the “trial-summary” result files have a header for each exper-
imental block. The start of the header is marked by a line of 54 asterixes, an example is given
below:

pychoacoustics version: 0.2.73; build date: 01-Mar-2014 09:45
Experiment version: pychoacoustics.default_experiments.audiogram 0.2.
→˓73 01-Mar-2014 09:45
Block Number: 1
Block Position: 1
Start: 01/03/2014 14:07

the header gives info on the software version, the experiment version (if available), the block
storage point (Block Number), the block presentation position (Block Position), and has a times-
tamp marking the date and time at which the block was started.

After the header, there is a “parameters section” listing the experimental parameters. The begin-
ning and the end of this section are marked by a line of 54 plus signs, a snippet of the parameters
section is shown below:

+++

Experiment Label:
Session Label:
Condition Label:
Experiment: Audiogram
Listener: L3
[...]
Response Light Duration (ms): 500
ISI: 500

Ear: Right
Signal Type: Sinusoid
Frequency (Hz): 1000
Level (dB SPL): 50
Duration (ms): 180
Ramps (ms): 10
+++

After the parameters section there is a “results section”. The specific structure of this section
depends on the paradigm (e.g. transformed up-down, or constant 1-interval 2-alternatives) used.
The specific structure of the result section for each type of procedure will be illustrated in Sec-
tion Result Files by Paradigm. The results section of a block-summary result file will contain
summary statistics for a whole block of trials, while the results section of a trial-summary re-
sult file will contain trial-by-trial information. Besides having paradigm-specific information,
“trial-summary” result files may also have experiment specific information. For example for a

6.2. Plain-Text Result Files 37

pychoacoustics Documentation, Release 0.6.12

frequency discrimination task with roving frequency of the standard, the trial-summary result
file may store the value of the standard frequency on each trial. For both “block-summary”,
and “trial-summary” result files the result section ends invariably with a timestamp marking the
date and time at which the experimental block was completed, and a further line indicating how
much time the listener took to complete the block of trials.

Todo: For the experiment-specific column in plain-text trial-summary result files, make ref-
erence to prm[‘additional_parameters_to_write’] when it will be explained in the writing your
own experiments section

The “session-summary” result files have a section listing the parameters used for each experi-
mental condition. After this section, a summary statistic for each block of the given experimental
condition is presented, followed by a summary statistic for all the blocks. The specific structure
of this result section for each type of procedure will be illustrated in Section Result Files by
Paradigm.

6.3 Result Files by Paradigm

In this section the fields of result files that are specific to each paradigm will be described.

6.3.1 Transformed Up-Down and Weighted Up-Down

Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-
Down)

The transformed up-down and weighted up-down tabular block-summary result files have two
paradigm-specific columns:

• threshold_arithmetic or threshold_geometric the estimate of the threshold derived by
averaging the final turnpoints of the adaptive track. Whether the column is named “thresh-
old_arithmetic”, or “threshold_geometric” depends on whether the adaptive track fol-
lowed a geometric, or an arithmetic procedure. For “threshold_arithmetic” the threshold
estimate is the arithmetic mean of the turnpoints, for “threshold_geometric” the threshold
estimate is the geometric mean of the turnpoints.

• SD the standard deviation of the final turnpoints of the adaptive track. If the procedure is
geometric the geometric standard deviation is calculated, otherwise the arithmetic stan-
dard deviation is calculated.

6.3. Result Files by Paradigm 38

pychoacoustics Documentation, Release 0.6.12

Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-
Down)

The transformed up-down and weighted up-down tabular trial-summary result files have two
paradigm-specific columns:

• adaptive_difference the value of the adaptive difference, that is the variable that is being
varied adaptively to find its threshold

• response 1 if the response was correct, 0 otherwise

Tabular Session-Summary Result Files (Transformed Up-Down and Weighted
Up-Down)

The transformed up-down and weighted up-down tabular session-summary result files have two
paradigm-specific columns:

• threshold_arithmetic or threshold_geometric the arithmetic, or geometric average of
the threshold estimates obtained in each block

• SE the arithmetic or geometric standard error of the threshold estimates obtained in each
block

Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted
Up-Down)

The results section of a transformed up-down procedure are shown below (weighted up-down
result files have the same structure):

42.00 62.00 58.00 66.00 | 60.00 64.00 58.00 62.00 54.00 56.00 50.00 52.
→˓00 |

turnpointMean = 57.00, s.d. = 4.90
B1 = 30, B2 = 22

the first line lists the turnpoints; the first | sign separates the initial turnpoints, which are not
included in the threshold estimate, from the final turnpoints. The second line shows the threshold
estimate (turnpointMean) which is obtained by averaging the final turnpoints, and the standard
deviation of the turnpoints. The final line lists the number of times each button was pressed by
the listener. In the above case the listener pressed button one 30 times and button two 22 times.
This may be useful to detect any biases in the choice of interval. The results above were collected
using an arithmetic procedure. When the results are obtained with a geometric procedure the
second line of the results section labels the threshold estimate as geometric turnpointMean,
as shown in the example below:

0.08 5.00 1.25 80.00 | 10.00 40.00 10.00 200.00 25.00 200.00 6.25␣
→˓25.00 |

(continues on next page)

6.3. Result Files by Paradigm 39

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
geometric turnpointMean = 29.82, s.d. = 3.75
B1 = 22, B2 = 40

and the threshold and standard deviation values are computed as geometric mean, and geometric
standard deviation, respectively.

Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-
Down)

A snippet from a transformed up-down trial-summary result file is shown below:

50.0; 1;
50.0; 1;
46.0; 1;
46.0; 1;
42.0; 1;
42.0; 0;
46.0; 0;
50.0; 1;

each row represents a trial, the first colum shows the value of the adaptive difference for that
trial (e.g. the level of the signal in a signal detection task), while the second column indicates
whether the response was correct (1), or incorrect (0). Note that depending on the experiment,
additional variables may be stored in a trial-summary result file. For example, in the F0DL
experiment, which has an option to use either a fixed, or a roving F0, the F0 for the trial is listed
in the third column of the trial-summary result file, as shown below:

20.0; 1; 408.58891957189206 ;
20.0; 1; 409.72312872085564 ;
5.0; 1; 474.15423804320403 ;
5.0; 1; 404.43567907073964 ;
1.25; 1; 456.6493420827598 ;
1.25; 1; 406.34270314673716 ;

Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-
Down)

The result section of a session-summary result file for a transformed up-down procedure is
shown below:

57.00
44.00

Mean = 50.50
SE = 6.50

6.3. Result Files by Paradigm 40

pychoacoustics Documentation, Release 0.6.12

the session included two blocks of trials, and the first two lines list the threshold estimate for each
of these blocks. The following lines present the mean and the standard error of these threshold
estimates. If the procedure is arithmetic, the mean and the standard error are calculated as the
arithmetic meand and the arithmetic standard error. If the procedure is geometric, the mean and
the standard error are calculated as the geometric meand and the geometric standard error.

6.3.2 Transformed Up-Down and Weighted Up-Down Interleaved
Result Files

Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-
Down Interleaved)

For each adaptive track, the transformed up-down and weighted up-down interleaved tabular
block-summary result files have two paradigm-specific columns:

• threshold_arithmetic_trackX or threshold_geometric_trackX the estimate of the
threshold derived by averaging the final turnpoints of the adaptive track number X.
Whether the column is named “threshold_arithmetic”, or “threshold_geometric” depends
on whether the adaptive track followed a geometric, or an arithmetic procedure. For
“threshold_arithmetic” the threshold estimate is the arithmetic mean of the turnpoints,
for “threshold_geometric” the threshold estimate is the geometric mean of the turnpoints.

• SD_trackX the standard deviation of the final turnpoints of the adaptive track number X.
If the procedure is geometric the geometric standard deviation is calculated, otherwise
the arithmetic standard deviation is calculated.

Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-
Down Interleaved)

Not currently implemented.

Tabular Session-Summary Result Files (Transformed Up-Down and Weighted
Up-Down Interleaved)

For each adaptive track, the transformed up-down and weighted up-down interleaved tabular
session-summary result files have two paradigm-specific columns:

• threshold_arithmetic_trackX or threshold_geometric_trackX the arithmetic, or geo-
metric average of the threshold estimates obtained in each block for the adaptive track
number X

• SE_trackX the arithmetic or geometric standard error of the threshold estimates obtained
in each block for the track number X

6.3. Result Files by Paradigm 41

pychoacoustics Documentation, Release 0.6.12

Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted
Up-Down Interleaved)

The result section of a plain-text block-summary file with a transformed up-down interleaved
paradigm is shown below:

TRACK 1:
-212.00 -208.00 -212.00 -200.00 | -204.00 -200.00 -204.00 -202.00 -204.
→˓00 -202.00 -208.00 -206.00 -208.00 -202.00 -206.00 -202.00 -208.00 -
→˓206.00 -208.00 -204.00 -208.00 -204.00 -210.00 -206.00 -210.00 -204.
→˓00 -206.00 -204.00 |

turnpointMean = -205.25, s.d. = 2.69
B1 = 44, B2 = 47

TRACK 2:
-208.00 -200.00 -208.00 -204.00 | -214.00 -212.00 -228.00 -224.00 -226.
→˓00 -224.00 -232.00 -230.00 -232.00 -230.00 -238.00 -232.00 |

turnpointMean = -226.83, s.d. = 7.55
B1 = 29, B2 = 42

for each track, after the track label (“TRACK 1”, “TRACK 2”, etc. . .), the first line lists the
turnpoints; the first | sign separates the initial turnpoints, which are not included in the threshold
estimate, from the final turnpoints. The second line after the track label shows the threshold
estimate (turnpointMean) which is obtained by averaging the final turnpoints, and the standard
deviation of the turnpoints. The final line lists the number of times each button was pressed by
the listener. The results above were collected using an arithmetic procedure. When the results
are obtained with a geometric procedure the second line of the results section labels the threshold
estimate as geometric turnpointMean, and the threshold and standard deviation values are
computed as geometric mean, and geometric standard deviation, respectively.

Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-
Down Interleaved)

A snippet from the he results section of a plain-text trial-summary file for a transformed up-down
interleaved paradigm is shown below:

-200.0; TRACK 1; 1;
-200.0; TRACK 2; 1;
-200.0; TRACK 1; 1;
-200.0; TRACK 2; 1;

for each trial, the first column shows the value of the adaptive difference (e.g. the level of the
signal in a signal detection task), the second column shows the track number, and the third
column indicates whether the response was correct (1), or incorrect (0)

6.3. Result Files by Paradigm 42

pychoacoustics Documentation, Release 0.6.12

Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-
Down Interleaved)

The results section of a plain-text session-summary file for a transformed up-down interleaved
paradigm is shown below:

TRACK 1:
-205.25
-228.33

Mean = -216.79
SE = 11.54

TRACK 2:
-226.83
-214.14

Mean = -220.49
SE = 6.35

for each track, first a list of the threshold estimates obtained in each block is printed. Then the
geometric or arithmetic (depending on the procedure) mean and standard deviation are shown.

6.3.3 UML and PSI Result Files

Tabular Block-Summary Result Files (UML and PSI)

The UML and PSI tabular block-summary result files have three paradigm-specific columns:

• threshold the estimate of the threshold, or the midpoint of the psychometric function

• slope the estimate of the slope of the psychometric function

• lapse the estimate of the lapse rate, which determines the upper asymptote of the psycho-
metric function

Tabular Trial-Summary Result Files (UML and PSI)

The UML and PSI tabular block-summary result files have two paradigm-specific columns:

• adaptive_difference the value at each trial of the parameter that is adaptively varied to
find the psychometric function

• response the response of the listener, 1 if s/he chose the correct interval, 0 otherwise

6.3. Result Files by Paradigm 43

pychoacoustics Documentation, Release 0.6.12

Tabular Session-Summary Result Files (UML and PSI)

Not currently implemented. Probably this will be never implemented because it makes more
sense to obtain session estimates by fitting psychometric functions to the responses across all
the session than to average the estimates from the tabular block-summary result files.

Plain-Text Block-Summary Result Files (UML and PSI)

The results section of a UML procedure is shown below (the structure for the PSI procedure is
the same):

Midpoint = 0.046
Slope = 1.299
Lapse = 0.061

B1 = 51, B2 = 49

the first line shows the estimated midpoint of the psychometric function (the threshold), the
second line shows the estimated slope of the psychometric function, and the third line shows the
estimated lapse rate which determines the upper asymptote of the psychometric function.

Plain-Text Trial-Summary Result Files (UML and PSI)

The result section of the UML and PSI tabular trial-summary files has two paradigm-specific
columns. The first column shows the value of the adaptive difference (the parameter that is
adaptively varied to find the psychometric function) for each trial. The second column shows
the response (1 for correct, 0 otherwise) given by the listener on each trial.

Plain-Text Session-Summary Result Files (UML and PSI)

Not currently implemented. Probably this will be never implemented because it makes more
sense to obtain session estimates by fitting psychometric functions to the responses across all
the session than to average the estimates from the plain-text block-summary result files.

6.3.4 PEST Result Files

Tabular Block-Summary Result Files (PEST)

The PEST tabular block-summary result files have a single paradigm specific column:

• threshold_arithmetic or threshold_geometric the threshold estimate. Whether the col-
umn is labelled “threshold_arithmetic”, or “threshold_geometric” depends on whether an
arithmetic, or a geometric procedure was used to vary the adaptive difference (the variable
that is being varied adaptively to find its threshold).

6.3. Result Files by Paradigm 44

pychoacoustics Documentation, Release 0.6.12

Tabular Trial-Summary Result Files (PEST)

Not currently implemented.

Tabular Session-Summary Result Files (PEST)

The PEST tabular session-summary result files have two paradigm specific columns:

• threshold_arithmetic or threshold_geometric the threshold estimated by averaging
across trial blocks. Whether the column is labelled “threshold_arithmetic”, or “thresh-
old_geometric” depends on whether an arithmetic, or a geometric procedure was used to
vary the adaptive difference (the variable that is being varied adaptively to find its thresh-
old). For “threshold_arithmetic” the threshold estimate is obtained by the arithmetic mean
of the threshold estimates in each block. For “threshold_geometric” the threshold esti-
mate is obtained by the geometric mean of the threshold estimates in each block.

• SE the standard error of the mean threshold obtained by averaging across blocks. For
“threshold_arithmetic” the standard error is obtained by the arithmetic standard error of
the threshold estimates in each block. For “threshold_geometric” the standard error is
obtained by the geometric standard error of the threshold estimates in each block.

Plain-Text Block-Summary Result Files (PEST)

The result section of a plain-text block-summary result file obtained with the PEST paradigm is
shown below:

Threshold = 0.62
B1 = 179, B2 = 160

the first line shows the threshold estimate. The second line shows how many times the listener
pressed each button. This may be useful to detect any biases in the choice of interval.

Plain-Text Trial-Summary Result Files (PEST)

A snippet from a plain-text trial-summary result file obtained with the PEST paradigm is shown
below:

50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
45.0; 1;
40.0; 1;
30.0; 1;

(continues on next page)

6.3. Result Files by Paradigm 45

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
30.0; 1;
30.0; 1;

the first column shows the value of the adaptive difference that was tested in each trial. The
second column indicates whether the listener’s response was correct or not (1 for correct, 0
otherwise).

Plain-Text Session-Summary Files (PEST)

The result section of a plain-text session-summary result file obtained with the PEST paradigm
is shown below:

0.62
-0.62

Mean = 0.00
SE = 0.62

the section starts with a listing of the threshold estimates obtained in each block. After this
listing the mean and standard error (arithmetic, or geometric, depending on the procedure used)
of these threshold estimates are shown.

6.3.5 Constant m-Intervals n-Alternatives Result Files

Tabular Block-Summary Result Files (Constant m-Intervals n-Alternatives)

The constant m-intervals n-alternatives tabular block-summary result files have four paradigm-
specific columns:

• dprime the d’ value

• perc_corr the percentage of correct response

• n_corr the number of correct responses

• n_trials the total number of trials

Tabular Trial-Summary Result Files (Constant m-Intervals n-Alternatives)

Not currently available

6.3. Result Files by Paradigm 46

pychoacoustics Documentation, Release 0.6.12

Tabular Session-Summary Result Files (Constant m-Intervals n-Alternatives)

The constant m-intervals n-alternatives tabular session-summary result files have four paradigm-
specific columns:

• dprime the d’ value

• perc_corr the percentage of correct response

• n_corr the number of correct responses

• n_trials the total number of trials

Plain-Text Block-Summary Result Files (Constant m-Intervals n-Alternatives)

The result section of a plain-text block-summary result file obtained with a constant m-intervals
n-alternatives procedure is shown below:

No. Correct = 37
No. Total = 50
Percent Correct = 0.74
d-prime = 0.910

the first row shows the number of correct responses, the second row shows the total number of
trials, the third row shows the percentage of correct responses, while the last row shows the d’
value.

Plain-Text Trial-Summary Result Files (Constant m-Intervals n-Alternatives)

A snippet from a plain-text trial-summary result file obtained with a constant m-intervals n-
alternatives procedure is shown below:

1;
1;
0;
0;
1;

the first and only column shows the response of the listenr (1 for correct, 0 otherwise).

6.3. Result Files by Paradigm 47

pychoacoustics Documentation, Release 0.6.12

Plain-Text Session-Summary Files (Constant m-Intervals n-Alternatives)

d-prime Block 1 = 0.910
d-prime Block 2 = 0.742

No. Correct = 72
No. Total = 100
Percent Correct = 72.00
d-prime = 0.824

6.3.6 Multiple Constants m-Intervals n-Alternatives Result Files

Tabular Block-Summary Result Files (Multiple Constants m-Intervals n-
Alternatives)

The multiple constants m-intervals n-alternatives tabular block-summary result files have four
paradigm-specific columns:

• dprime_subcX the d’ value for sub-condition X

• perc_corr_subcX the percentage of correct response for sub-condition X

• n_corr_subcX the number of correct responses for sub-condition X

• n_trials_subcX the total number of trials for sub-condition X

Tabular Trial-Summary Result Files (Multiple Constants m-Intervals n-
Alternatives)

Not currently implemented.

Tabular Session-Summary Result Files (Multiple Constants m-Intervals n-
Alternatives)

The multiple constants m-intervals n-alternatives tabular session-summary result files have the
following paradigm-specific columns:

• dprime_ALL the d’ value across sub-conditions

• perc_corr_ALL the percentage of correct response across sub-conditions

• n_corr_ALL the number of correct responses across sub-conditions

• n_trials_ALL the total number of trials across sub-conditions

then for each sub-condition:

• dprime_subcX the d’ value for sub-condition X

• perc_corr_subcX the percentage of correct response for sub-condition X

6.3. Result Files by Paradigm 48

pychoacoustics Documentation, Release 0.6.12

• n_corr_subcX the number of correct responses for sub-condition X

• n_trials_subcX the total number of trials for sub-condition X

Plain-Text Block-Summary Result Files (Multiple Constants m-Intervals n-
Alternatives)

The result section of a plain-text block-summary result file obtained with a multiple constants
m-intervals n-alternatives procedure is shown below:

CONDITION, 1; 1000.0
No. Correct = 17
No. Total = 25
Percent Correct = 68.00
d-prime = 0.661

CONDITION, 2; 2000.0
No. Correct = 19
No. Total = 25
Percent Correct = 76.00
d-prime = 0.999

CONDITION, ALL
No. Correct = 36
No. Total = 50
Percent Correct = 72.00
d-prime = 0.824

first, for each condition, after a line with the sub-condition number and condition label, the
number of correct responses, the number of total trials, the percent of correct responses, and d’
are show in successive lines. Then the same information is shown for the data pooled across
sub-conditions.

Plain-Text Trial-Summary Result Files (Multiple Constants m-Intervals n-
Alternatives)

A snippet from a plain-text trial-summary result file obtained with a multiple constants m-
intervals n-alternatives procedure is shown below:

1000.0; 1;
1000.0; 1;
2000.0; 1;
1000.0; 0;
1000.0; 1;
2000.0; 1;

the first column shows the sub-condition label for each trial, the second column shows the re-
sponse of the listener (1 for correct, 0 otherwise).

6.3. Result Files by Paradigm 49

pychoacoustics Documentation, Release 0.6.12

Plain-Text Session-Summary Files (Multiple Constants m-Intervals n-
Alternatives)

The result section of a plain-text session-summary result file obtained with a multiple constants
m-intervals n-alternatives procedure is shown below:

CONDITION 1; 1000.0
Percent Correct Block 1 = 68.00
Percent Correct Block 2 = 64.00

No. Correct = 33
No. Total = 50
Percent Correct = 66.00
d-prime = 0.583

CONDITION 2; 2000.0
Percent Correct Block 1 = 76.00
Percent Correct Block 2 = 72.00

No. Correct = 37
No. Total = 50
Percent Correct = 74.00
d-prime = 0.910

CONDITION ALL
Percent Correct Block 1 = 72.00
Percent Correct Block 2 = 68.00

No. Correct = 70
No. Total = 100
Percent Correct = 70.00
d-prime = 0.742

first, for each condition, a line with the sub-condition number and sub-condition label is shown,
followed by a list of the percentage of correct responses for that condition in each block. After
these lines the number of correct responses, the number of total trials, the percentage of correct
responses, and d’ are show in successive lines.

After these summaries for each sub-condition, the same summaries are shown for the data pooled
across sub-conditions (“CONDITION ALL”).

6.3. Result Files by Paradigm 50

pychoacoustics Documentation, Release 0.6.12

6.3.7 Constant 1-Intervals 2-Alternatives Result Files

Tabular Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)

The constant 1-interval 2-alternatives tabular block-summary result files have six paradigm-
specific columns:

• dprime the d’ value

• nTotal the total number of trials

• nCorrectA the number of correct responses for A (signal present) trials

• nTotalA the total number of A (signal present) trials

• nCorrectB the number of correct responses for B (signal absent) trials

• nTotalB the total number of B (signal absent) trials

Tabular Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)

Not currently implemented.

Tabular Session-Summary Result Files (Constant 1-Intervals 2-Alternatives)

The constant 1-interval 2-alternatives tabular session-summary result files have six paradigm-
specific columns:

• dprime the d’ value

• nTotal the total number of trials

• nCorrectA the number of correct responses for A (signal present) trials

• nTotalA the total number of A (signal present) trials

• nCorrectB the number of correct responses for B (signal absent) trials

• nTotalB the total number of B (signal absent) trials

Plain-Text Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)

The result section of a plain-text block-summary result file obtained with a constant 1-interval
2-alternatives procedure is shown below:

No. Correct = 16
No. Total = 25
Percent Correct = 64.00
d-prime = 0.785

No. Correct Condition Yes = 8
(continues on next page)

6.3. Result Files by Paradigm 51

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
No. Total Condition Yes = 11
Percent Correct Condition Yes = 72.73
No. Correct Condition No = 8
No. Total Condition No = 14
Percent Correct Condition No = 57.14

the first part shows the number of correct responses, number of total trials, the percentage of
correct responses, and the d’ value. The second part shows the number of correct responses, the
number of total trials, and the percentage of correct responses separately for signal present (in
this case “Yes”), and signal absent (in this case “No”) trials. Please, note that “Yes”, and “No”
are the names of the condition of the experiment that was ran. In other experiments the names
of the conditions will differ.

Plain-Text Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)

A snippet from a plain-text trial-summary result file obtained with a constant 1-interval 2-
alternatives procedure is shown below:

Yes; 1;
Yes; 1;
Yes; 0;
Yes; 1;
Yes; 1;
No; 0;
No; 0;
No; 0;
No; 0;
No; 1;

the first column shows the name of the condition (in this case “Yes” for signal present, and “No”
for signal absent). The second column indicates whether the response of the listener was correct
or not (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Constant 1-Intervals 2-Alternatives)

The result section of a plain-text session-summary result file obtained with a constant 1-interval
2-alternatives procedure is shown below:

d-prime Block 1 = 0.785
d-prime Block 2 = 0.097

No. Correct = 29
No. Total = 50
Percent Correct = 58.00
d-prime = 0.416

(continues on next page)

6.3. Result Files by Paradigm 52

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)

No. Correct A = 14
No. Total A = 23
Percent Correct A = 60.87
No. Correct B = 15
No. Total B = 27
Percent Correct B = 55.56

the section starts with a list of the d’ values obtained on each block of trials. The second para-
graph shows the number of correct responses, the total number of trials, the percentage of correct
responses, and the d’ value. The last paragraph shows the number of correct responses, the total
number of trials, and the percentage of correct responses separately for “A” (signal present), and
“B” (signal absent) trials.

6.3.8 Multiple Constants 1-Intervals 2-Alternatives Result Files

Tabular Block-Summary Result Files (Multiple Constants 1-Intervals 2-
Alternatives)

The multiple constants 1-interval 2-alternatives tabular block-summary result files have the fol-
lowing paradigm-specific columns:

• dprime_ALL the d’ value across all sub-conditions

• nTotal_ALL the total number of trials across all sub-conditions

• nCorrectA_ALL the number of correct responses for A (signal present) trials across all
sub-conditions

• nTotalA_ALL the total number of A (signal present) trials across all sub-conditions

• nCorrectB_ALL the number of correct responses for B (signal absent) trials across all
sub-conditions

• nTotalB_ALL the total number of B (signal absent) trials across all sub-conditions

then for each sub-condition:

• dprime_subcX the d’ value for sub-condition X

• nTotal_subcX the total number of trials for sub-condition X

• nCorrectA_subcX the number of correct responses for A (signal present) trials for sub-
condition X

• nTotalA_subcX the total number of A (signal present) trials for sub-condition X

• nCorrectB_subcX the number of correct responses for B (signal absent) trials for sub-
condition X

• nTotalB_subcX the total number of B (signal absent) trials for sub-condition X

6.3. Result Files by Paradigm 53

pychoacoustics Documentation, Release 0.6.12

Tabular Trial-Summary Result Files (Multiple Constants 1-Intervals 2-
Alternatives)

Not currently implemented.

Tabular Session-Summary Result Files (Multiple Constants 1-Intervals 2-
Alternatives)

The multiple constants 1-interval 2-alternatives tabular session-summary result files have the
following paradigm-specific columns:

• dprime_ALL the d’ value across all sub-conditions

• nTotal_ALL the total number of trials across all sub-conditions

• nCorrectA_ALL the number of correct responses for A (signal present) trials across all
sub-conditions

• nTotalA_ALL the total number of A (signal present) trials across all sub-conditions

• nCorrectB_ALL the number of correct responses for B (signal absent) trials across all
sub-conditions

• nTotalB_ALL the total number of B (signal absent) trials across all sub-conditions

then for each sub-condition:

• dprime_subcX the d’ value for sub-condition X

• nTotal_subcX the total number of trials for sub-condition X

• nCorrectA_subcX the number of correct responses for A (signal present) trials for sub-
condition X

• nTotalA_subcX the total number of A (signal present) trials for sub-condition X

• nCorrectB_subcX the number of correct responses for B (signal absent) trials for sub-
condition X

• nTotalB_subcX the total number of B (signal absent) trials for sub-condition X

Plain-Text Block-Summary Result Files (Multiple Constants 1-Intervals 2-
Alternatives)

The result section of a plain-text block-summary result file obtained with a multiple constants
1-interval 2-alternatives procedure is shown below:

CONDITION: 1; Center Frequency, 1000.0
No. Correct = 22
No. Total = 25
Percent Correct = 88.00
d-prime = 2.480

(continues on next page)

6.3. Result Files by Paradigm 54

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
No. Correct Subcondition present = 13
No. Total Subcondition present = 16
Percent Correct Subcondition present = 81.25
No. Correct Subcondition absent = 9
No. Total Subcondition absent = 9
Percent Correct Subcondition absent = 100.00

CONDITION: 2; Center Frequency, 1001.0
No. Correct = 20
No. Total = 25
Percent Correct = 80.00
d-prime = 1.695

No. Correct Subcondition present = 9
No. Total Subcondition present = 12
Percent Correct Subcondition present = 75.00
No. Correct Subcondition absent = 11
No. Total Subcondition absent = 13
Percent Correct Subcondition absent = 84.62

CONDITION: ALL
No. Correct = 42
No Total = 50
Percent Correct = 84.00
d-prime = 2.127

No. Correct Subcondition present = 22
No. Total Subcondition present = 28
Percent Correct Subcondition present = 78.57
No. Correct Subcondition absent = 20
No. Total Subcondition absent = 22
Percent Correct Subcondition absent = 90.91

there are three parts, one containing summaries for each sub-condition, and one containing
summaries for the data pooled across all sub-conditions (“CONDITION: ALL”). The parts
containing summaries for each sub-condition start with the sub-condition number, and sub-
condition label (this will vary from experiment to experiment). Following this, the total number
of correct responses, the total number of trials, the percentage of correct responses, and the d’
value for the subcondition are shown. Then the number of correct responses, the number of
total responses, and the percentage of correct responses are shown for each sub-sub-condition
within a sub-condition. This same information is then shown for the data pooled across all
sub-condition.

6.3. Result Files by Paradigm 55

pychoacoustics Documentation, Release 0.6.12

Plain-Text Trial-Summary Result Files (Multiple Constants 1-Intervals 2-
Alternatives)

A snippet from a plain-text trial-summary result file obtained with a multiple constants 1-
interval 2-alternatives procedure is shown below:

Center Frequency, 1001.0; present; 0;
Center Frequency, 1000.0; absent; 1;
Center Frequency, 1001.0; absent; 1;
Center Frequency, 1000.0; present; 1;

the first column shows the subcondition label. The second column shows the sub-sub-condition
label (trial type). The third column indicates whether the listener’s response was correct or not
(1 for a correct response, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants 1-Intervals 2-
Alternatives)

The result section of a plain-text session-summary result file obtained with a multiple constants
1-interval 2-alternatives procedure is shown below:

CONDITION: 1; Center Frequency, 1000.0
d-prime Block 1 = 2.480
d-prime Block 2 = 2.108

No. Correct = 43
No. Total = 50
Percent Correct = 86.00
d-prime = 2.480

No. Correct A = 26
No. Total A = 32
Percent Correct A = 81.25
No. Correct B = 17
No. Total B = 18
Percent Correct B = 94.44

CONDITION: 2; Center Frequency, 1001.0
d-prime Block 1 = 1.695
d-prime Block 2 = 1.177

No. Correct = 38
No. Total = 50
Percent Correct = 76.00
d-prime = 1.411

(continues on next page)

6.3. Result Files by Paradigm 56

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
No. Correct A = 18
No. Total A = 24
Percent Correct A = 75.00
No. Correct B = 20
No. Total B = 26
Percent Correct B = 76.92

CONDITION: ALL
d-prime Block 1 = 2.127
d-prime Block 2 = 1.539

No. Correct = 81
No. Total = 100
Percent Correct = 81.00
d-prime = 1.790

No. Correct A = 44
No. Total A = 56
Percent Correct A = 78.57
No. Correct B = 37
No. Total B = 44
Percent Correct B = 84.09

there are three parts, one containing summaries for each sub-condition, and one containing
summaries for the data pooled across all sub-conditions. The parts containing summaries for
each sub-condition start with a line showing the sub-condition number, and sub-condition label
(this will vary from experiment to experiment). Following this there is a listing of d’ values
obtain in each block for that subcondition. The next lines show the total number of correct
responses, the total number of trials, the percentage of correct responses, and the d’ value for
the given sub-condition. Then, the number of correct responses, the number of trials, and the
percentage of correct responses are shown for each trial type (“A” for signal present, “B” for
signal absent) within a sub-condition. This same information is then shown for the data pooled
across all sub-condition.

6.3.9 Constant 1-Pair Same/Different Result Files

Tabular Block-Summary Result Files (Constant 1-Pair Same/Different)

The constant 1-pair same/different tabular block-summary result files have seven paradigm-
specific columns:

• dprime_IO the estimated d’ for a listener using the independent observations strategy

• dprime_diff the estimated d’ for a listener using the differencing strategy

• nTotal the total number of trials

6.3. Result Files by Paradigm 57

pychoacoustics Documentation, Release 0.6.12

• nCorrect_same the number of correct response for “same” trials

• nTotal_same the total number of “same” trials

• nCorrect_different the number of correct response for “different” trials

• nTotal_different the total number of “different” trials

Tabular Session-Summary Result Files (Constant 1-Pair Same/Different)

The constant 1-pair same/different tabular session-summary result files have seven paradigm-
specific columns:

• dprime_IO the estimated d’ for a listener using the independent observations strategy

• dprime_diff the estimated d’ for a listener using the differencing strategy

• nTotal the total number of trials

• nCorrect_same the number of correct response for “same” trials

• nTotal_same the total number of “same” trials

• nCorrect_different the number of correct response for “different” trials

• nTotal_different the total number of “different” trials

Plain-Text Block-Summary Result Files (Constant 1-Pair Same/Different)

The results section for a constant 1-pair same/different is shown below:

No. Correct = 7
No. Total = 10
Percent Correct = 70.00
d-prime IO = 1.860
d-prime diff = 2.223

No. Correct Condition same = 4
No. Total Condition same = 6
Percent Correct Condition same= 66.67
No. Correct Condition different = 3
No. Total Condition different = 4
Percent Correct Condition different= 75.00

the first line shows the total number of correct responses. The second line shows the total number
of trials. The third line shows the percentage of correct responses. The fourth line shows the
estimated d’ for a listener using the independent observations strategy. The fifth line shows
the estimated d’ for a listener using the differencing strategy. The following lines show the
number of correct responses, the total number of trials, and the percentage of correct responses,
separately for “same”, and “different” trials.

6.3. Result Files by Paradigm 58

pychoacoustics Documentation, Release 0.6.12

Plain-Text Trial-Summary Result Files (Constant 1-Pair Same/Different)

A snippet from the result section of a 1-pair same/different file is shown below:

same; 0;
same; 0;
different; 0;
same; 1;
different; 1;

the first column indicates whether the trial was a “same”, or “different” trial. The second column
shows the response (1 for correct, 0 otherwise) given by the listener on each trial.

Plain-Text Session-Summary Files (Constant 1-Pair Same/Different)

The result section for a 1-pair same/different paradigm session is shown below:

d-prime IO Block 1 = 2.430
d-prime diff Block 1 = 2.923
d-prime IO Block 2 = 1.955
d-prime diff Block 2 = 2.406

No. Correct = 46
No. Total = 60
Percent Correct = 76.67
d-prime IO = 2.250
d-prime diff = 2.726

No. Correct A = 24
No. Total A = 33
Percent Correct A = 72.73
No. Correct B = 22
No. Total B = 27
Percent Correct B = 81.48

the first paragraph is a listing of the d’ values calculated according to the independent observa-
tions and differencing strategy for each block of trials in the session. The secon paragraph lists
the number of correct responses, total number of trials, percent correct, and d’ values (for both
independent observation and differencing strategy) across all the blocks of trials in the session.
The last paragraph shows summary statistics for “same”, and “different” trials separately (“A”
refers to “same” trials, and “B” refers to “different” trials.

6.3. Result Files by Paradigm 59

pychoacoustics Documentation, Release 0.6.12

6.3.10 Multiple Constants 1-Pair Same-Different Result Files

Tabular Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)

The multiple constants 1-pair same/different tabular block-summary result files have seven
paradigm-specific columns for each pair of stimuli that are tested:

• dprime_IO_pairX the estimated d’ for a listener using the independent observations
strategy for the stimulus pair number X

• dprime_diff_pairX the estimated d’ for a listener using the differencing strategy for the
stimulus pair number X

• nTotal_pairX the total number of trials for the stimulus pair number X

• nCorrect_same_pairX the number of correct response for “same” trials for the stimulus
pair number X

• nTotal_same_pairX the total number of “same” trials for the stimulus pair number X

• nCorrect_different_pairX the number of correct response for “different” trials for the
stimulus pair number X

• nTotal_different_pairX the total number of “different” trials for the stimulus pair number
X

Tabular Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)

The multiple constants 1-pair same/different tabular trial-summary result files have six
paradigm-specific columns:

• pair the stimulus pair tested in the given trial

• stim1 the label of the stimulus that was presented in the first interval

• stim2 the label of the stimulus that was presented in the second
interval

• case whether the trial was a “same” or a “different” trial

• response 1 for a correct response, 0 otherwise

Tabular Session-Summary Result Files (Multiple Constants 1-Pair Same-
Different)

The multiple constants 1-pair same/different tabular session-summary result files have seven
paradigm-specific columns for each pair of stimuli that are tested:

• dprime_IO_pairX the estimated d’ for a listener using the independent observations
strategy for the stimulus pair number X

• dprime_diff_pairX the estimated d’ for a listener using the differencing strategy for the
stimulus pair number X

6.3. Result Files by Paradigm 60

pychoacoustics Documentation, Release 0.6.12

• nTotal_pairX the total number of trials for the stimulus pair number X

• nCorrect_same_pairX the number of correct response for “same” trials for the stimulus
pair number X

• nTotal_same_pairX the total number of “same” trials for the stimulus pair number X

• nCorrect_different_pairX the number of correct response for “different” trials for the
stimulus pair number X

• nTotal_different_pairX the total number of “different” trials for the stimulus pair number
X

Plain-Text Block-Summary Result Files (Multiple Constants 1-Pair Same-
Different)

The result section of a plain-text block-summary file obtained with the multiple constants 1-pair
same/different paradigm is shown below:

DIFFERENCE: Pair1
No. Correct = 21
No. Total = 25
Percent Correct = 84.00
d-prime IO = 2.698
d-prime diff = 3.397

No. Correct Condition same = 12
No. Total Condition same = 14
Percent Correct Condition same = 85.71
No. Correct Condition different = 9
No. Total Condition different = 11
Percent Correct Condition different = 81.82

DIFFERENCE: Pair2
No. Correct = 19
No. Total = 25
Percent Correct = 76.00
d-prime IO = 2.216
d-prime diff = 2.756

No. Correct Condition same = 8
No. Total Condition same = 10
Percent Correct Condition same = 80.00
No. Correct Condition different = 11
No. Total Condition different = 15
Percent Correct Condition different = 73.33

the result section is composed of two parts for each pair of stimuli tested. The first part lists first
the pair number, and then gives summary statistics for that pair (number of correct responses,

6.3. Result Files by Paradigm 61

pychoacoustics Documentation, Release 0.6.12

total number of trials, percent correct, d’ for the independent observations strategy, d’ for the
differencing strategy). The second part gives summary statistics separately for “same” and “dif-
ferent” trials.

Plain-Text Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)

A snippet from a plain-text trial-summary result file for the multiple constants 1-pair
same/different paradigm is shown below:

Pair2_WAV2-WAV1_different; 0;
Pair1_WAV2-WAV1_different; 1;
Pair2_WAV1-WAV2_different; 1;
Pair1_WAV2-WAV2_same; 0;
Pair2_WAV1-WAV2_different; 1;
Pair2_WAV2-WAV1_different; 1;
Pair1_WAV2-WAV2_same; 1;

the first column tells the stimulus pair that was tested in each trial, as well as the sequence of
stimuli that was played, and whether the trial was a “same”, or a “different” trial. The second
column shows the response (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants 1-Pair Same-Different)

Not currently implemented.

6.3.11 Multiple Constants ABX Result Files

Tabular Block-Summary Result Files (Multiple Constants ABX)

The multiple constants ABX tabular block-summary result files have seven paradigm-specific
columns for each pair of stimuli that are tested:

• dprime_IO_pairZ the estimated d’ for a listener using the independent observations strat-
egy for the stimulus pair number Z

• dprime_diff_pairZ the estimated d’ for a listener using the differencing strategy for the
stimulus pair number Z

• nTotal_pairZ the total number of trials for the stimulus pair number Z

• nCorrect_A_pairZ the number of correct response for “A” trials for the stimulus pair
number Z

• nTotal_A_pairZ the total number of “A” trials for the stimulus pair number Z

• nCorrect_B_pairZ the number of correct response for “B” trials for the stimulus pair
number Z

• nTotal_B_pairZ the total number of “B” trials for the stimulus pair number Z

6.3. Result Files by Paradigm 62

pychoacoustics Documentation, Release 0.6.12

Tabular Trial-Summary Result Files (Multiple Constants ABX)

The multiple constants ABX tabular trial-summary result files have six paradigm-specific
columns:

• pair the stimulus pair tested in the given trial

• A the label of the stimulus that was presented in interval A

• B the label of the stimulus that was presented in interval B

• X the label of the stimulus that was presented in interval X

• case whether the X stimulus is the same as the one presented in interval A or B

• response 1 for a correct response, 0 otherwise

Tabular Session-Summary Result Files (Multiple Constants ABX)

The multiple constants ABX tabular session-summary result files have seven paradigm-specific
columns for each pair of stimuli that are tested:

• dprime_IO_pairZ the estimated d’ for a listener using the independent observations strat-
egy for the stimulus pair number Z

• dprime_diff_pairZ the estimated d’ for a listener using the differencing strategy for the
stimulus pair number Z

• nTotal_pairZ the total number of trials for the stimulus pair number Z

• nCorrect_A_pairZ the number of correct response for “A” trials for the stimulus pair
number Z

• nTotal_A_pairZ the total number of “A” trials for the stimulus pair number Z

• nCorrect_B_pairZ the number of correct response for “B” trials for the stimulus pair
number Z

• nTotal_B_pairZ the total number of “B” trials for the stimulus pair number Z

Plain-Text Block-Summary Result Files (Multiple Constants ABX)

The result section of a plain-text block-summary file for the multiple constants ABX paradigm
is shown below:

DIFFERENCE: Pair1
No. Correct = 17
No. Total = 25
Percent Correct = 68.00
d-prime IO = 1.313
d-prime diff = 1.468

No. Correct Condition A = 12
(continues on next page)

6.3. Result Files by Paradigm 63

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
No. Total Condition A = 16
Percent Correct Condition A = 75.00
No. Correct Condition B = 5
No. Total Condition B = 9
Percent Correct Condition B = 55.56

the result section is composed of two parts for each pair of stimuli tested. The first part lists first
the pair number, and then gives summary statistics for that pair (number of correct responses,
total number of trials, percent correct, d’ for the independent observations strategy, d’ for the
differencing strategy). The second part gives summary statistics separately for trials in which
stimulus X was presented in interval A and for trials in which it was presented in interval B.

Plain-Text Trial-Summary Result Files (Multiple Constants ABX)

A snippet from a plain-text trial-summary result file for the multiple constants ABX paradigm
is shown below:

Pair2_WAV1-WAV2_WAV1_A; 1;
Pair2_WAV1-WAV2_WAV1_A; 0;
Pair2_WAV2-WAV1_WAV2_A; 1;
Pair2_WAV1-WAV2_WAV2_B; 0;
Pair2_WAV1-WAV2_WAV2_B; 1;
Pair1_WAV2-WAV1_WAV2_A; 1;
Pair2_WAV1-WAV2_WAV2_B; 1;

the first column tells the stimulus pair that was tested in each trial, as well as the sequence of
stimuli that was played, and whether stimulus X was presented in interval A or in interval B.
The second column shows the response (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants ABX)

Not currently implemented.

6.3.12 Multiple Constants Odd One Out Result Files

Tabular Block-Summary Result Files (Multiple Constants Odd One Out)

The multiple constants odd one out tabular block-summary result files have five paradigm-
specific columns for each subcondition tested:

• nCorr_subcndX the number of correct response in subcondition X

• nTrials_subcndX the number of trials in subcondition X

• percCorr_subcndX the percentage of correct responses in subcondition X

6.3. Result Files by Paradigm 64

pychoacoustics Documentation, Release 0.6.12

• dprime_IO_subcndX the estimated d’ in subcondition X for a listener using the inde-
pendent observations strategy

• dprime_diff_subcndX the estimated d’ in subcondition X for a listener using the differ-
encing strategy

Tabular Trial-Summary Result Files (Multiple Constants Odd One Out)

The multiple constants odd one out tabular trial-summary result files have two paradigm-specific
columns:

• subcondition the subcondition tested in each trial

• response 1 for a correct response, 0 otherwise

Tabular Session-Summary Result Files (Multiple Constants Odd One Out)

The multiple constants odd one out tabular session-summary result files have five paradigm-
specific columns for each subcondition tested:

• nCorr_subcndX the number of correct response in subcondition X

• nTrials_subcndX the number of trials in subcondition X

• percCorr_subcndX the percentage of correct responses in subcondition X

• dprime_IO_subcndX the estimated d’ in subcondition X for a listener using the inde-
pendent observations strategy

• dprime_diff_subcndX the estimated d’ in subcondition X for a listener using the differ-
encing strategy

Plain-Text Block-Summary Result Files (Multiple Constants Odd One Out)

The result section of a plain-text block-summary file for the multiple constants odd one out
paradigm is shown below:

Condition Comparison1

No. Correct = 9
No. Trials = 10
Percent Correct = 90.000
d-prime IO = 3.324
d-prime diff = 4.028

Condition Comparison2

No. Correct = 7
(continues on next page)

6.3. Result Files by Paradigm 65

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
No. Trials = 10
Percent Correct = 70.000
d-prime IO = 2.101
d-prime diff = 2.504

B1 = 7, B2 = 7, B3 = 6

for each subcondition, after the subcondition label, the following values are listed on successive
lines: the number of correct trials, the number of trials, the percentage of correct responses, the
d’ value for a listener using the independent observations strategy, and the d’ value for a listener
using the differencing strategy.

The final line shows the number of times each button was pressed by the listener.

Plain-Text Trial-Summary Result Files (Multiple Constants Odd One Out)

A snippet from a plain-text trial-summary result file for the multiple constants odd one out
paradigm is shown below:

Comparison2; 0;
Comparison2; 1;
Comparison1; 1;
Comparison1; 1;
Comparison1; 1;
Comparison1; 0;

the first column shows the label of the subcondition tested on each trial, the second column
shows the response (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants Odd One Out)

Not currently implemented.

6.3.13 Multiple Constants Sound Comparison Result Files

Tabular Block-Summary Result Files (Multiple Constants Sound Comparison)

The multiple constants odd one out tabular block-summary result files have the following
paradigm-specific columns:

• nTrials the total number of trials per subcondition

then, for each condition:

• stim1_count_subcndX the number of times stimulus 1 was chosen as the odd one in
subcondition X

6.3. Result Files by Paradigm 66

pychoacoustics Documentation, Release 0.6.12

• stim1_percent_subcndX the percent of times stimulus 1 was chosen as the odd one in
subcondition X

• stim2_count_subcndX the number of times stimulus 3 was chosen as the odd one in
subcondition X

• stim2_percent_subcndX the percent of times stimulus 2 was chosen as the odd one in
subcondition X

• stim3_count_subcndX the number of times stimulus 3 was chosen as the odd one in
subcondition X

• stim3_percent_subcndX the percent of times stimulus 3 was chosen as the odd one in
subcondition X

Tabular Trial-Summary Result Files (Multiple Constants Sound Comparison)

Not currently implemented.

Tabular Session-Summary Result Files (Multiple Constants Sound Comparison)

Not currently implemented.

Plain-Text Block-Summary Result Files (Multiple Constants Sound Comparison)

The result section of an odd-one-out plain-text block-summary result file is shown below:

Condition Comparison1
Stimulus 1 = 8/25; Percent = 32.00
Stimulus 2 = 7/25; Percent = 28.00
Stimulus 3 = 10/25; Percent = 40.00

Condition Comparison2
Stimulus 1 = 10/25; Percent = 40.00
Stimulus 2 = 6/25; Percent = 24.00
Stimulus 3 = 9/25; Percent = 36.00

B1 = 5, B2 = 40, B3 = 5

for each condition tested in a block of trials the result section lists the name of the condition,
and for each stimulus, the number of times it was chosen as the odd one out of the total number
of trials, and the percentage of times it was chosen as the odd one.

The last line in the code snippet above shows the number of times each button was pressed.

6.3. Result Files by Paradigm 67

pychoacoustics Documentation, Release 0.6.12

Plain-Text Trial-Summary Result Files (Multiple Constants Sound Comparison)

A snippet from the result section of an odd-one-out plain-text trial-summary result file is shown
below:

Comparison2; 1;
Comparison1; 2;
Comparison1; 3;

the first column shows the condition tested on each trial. The second column shows the alterna-
tive chosen.

Plain-Text Session-Summary Files (Multiple Constants Sound Comparison)

Not currently implemented.

6.4 Log Results Files

pychoacoustics automatically saves backup copies of the “block summary” and “trial-
summary” files in a backup folder. On Linux systems this folder is located in

~/.local/share/data/pychoacoustics/data_backup

on Windows systems it is located in

C:\\Users\username\.local\share\data\pychoacoustics\data_backup

where username is your account login name. A separate file is saved for each block of trials
that is run. These files are named according to the date and time at which the blocks were started
(the naming follows the YY-MM-DD-HH-MM-SS scheme). Unlike other results files, that are
written only once a block of trials has been completed, these log results files get written as soon
as information is available (e.g., a new line in the “trial-summary” results file is written at the
end of each trial).

6.4. Log Results Files 68

7
Default Experiments

7.1 Audiogram

7.2 Demo Audiogram Multiple Frequencies

7.3 Demo Frequency Discrimination

7.4 Demo Signal Detection

7.5 Dummy Adaptive

7.6 F0DL

7.7 Level Discrimination

7.8 WAV ABX

7.9 WAV Comparison

7.10 WAV Same/Different

69

8
The pychoacoustics Engine

8.1 Sound Output

8.1.1 Sound Output on Linux

On Linux systems pychoacoustics can either output sound (numpy arrays) directly to the
soundcard, or write a WAV file for each sound and call an external command to play it. Currently,
sending sounds directly to the soundcard is possible only through the pyaudio or through the
alsaaudio (optional dependency, Linux only) Python modules. If these modules are installed,
they will be detected automatically and you will be able to select one of them as the “Play
Command” in the sound preferences dialog. When you select alsaaudio as the play command,
if you have multiple soundcards, you can select the device to which the sound will be sent. There
will be also an option to set the size of the buffer that alsaaudio uses to play sounds. If the
buffer is not filled completely by a sound (buffer size greater than number of samples in the
sound), it will be zero padded. This may lead to some latency between the offset of a sound
and the onset of the following one. If you set a value smaller than one the buffer size will be
automatically set to the number of samples in the sound that is being played.

Using an external command to play sounds generally works very well and is fast on modern
hardware. pychoacoustics tries to detect available play commands on your system each time
it starts up. On Linux systems, the recommended play command is aplay, which is installed by
default on most Linux distributions. aplay supports 24-bit output on 24-bit soundcards with
appropriate Linux drivers. Other possible play commands are play, which is provided by sox
and sndfile-play, which is provided by the libsndfile tools. You can call another program by
choosing “custom” in the “Play Command” drop-down menu and spelling out the name of the
command in the box below.

70

http://people.csail.mit.edu/hubert/pyaudio/
http://pyalsaaudio.sourceforge.net/
http://sox.sourceforge.net/
http://www.mega-nerd.com/libsndfile/

pychoacoustics Documentation, Release 0.6.12

8.1.2 Sound Output on Windows

The command that pychoacoustics uses by default on Windows is winsound. This com-
mand supports only 16-bit output. pychoacoustics can also use pyaudio to output sound on
Windows. pyaudio can use several Windows sound APIs, including MME, ASIO, and WAS-
API. The MME API, is limited to 16-bit output. ASIO and WASAPI on the other hand, can
play sounds with full 24-bit resolution. Depending on the source of your pyaudio installation
(e.g. pip, conda, conda-forge) the WASAPI and ASIO APIs may or may not be activated.

Other possible play commands on Windows are play, which is provided by sox and
sndfile-play, which is provided by the libsndfile tools. These programs need to be installed
by the user. If they are in the system path, pychoacoustics will detect them automatically.
Note that external media players with a graphical user interface (like foobar2000) may not work
well with pychoacoustics.

8.1.3 Sound Output on macOS

By default pychoacoustics uses the afplay command to output sound on macOS.
If pyaudio is properly installed and configured for the Python distribution used to run
pychoacoustics it can also be used by pychoacoustics to play sounds on macOS.

8.1.4 Sound Output on FreeBSD

The default command used by pychoacoustics to play sound on FreeBSD is wavplay. Sev-
eral other commands can be used to play sound on FreeBSD systems, see here.

8.2 Parameters Files

Parameters files are plain text files, that can be modified through pychoacoustics or through
a text editor. They contain a header with information that applies to all the experimental blocks
stored in a parameters file, and sections corresponding to the parameters that are specific to each
experimental block store in a parameters file. The header contains the following fields:

• Phones

• Shuffle Mode

• Response Mode

• Auto Resp. Mode Perc. Corr.

• Sample Rate

• Bits

• Trigger On/Off

• Experiment Label

8.2. Parameters Files 71

http://sox.sourceforge.net/
http://www.mega-nerd.com/libsndfile/
https://forums.freebsd.org/threads/59793/

pychoacoustics Documentation, Release 0.6.12

• End Command

• Shuffling Scheme

• No. Repetitions

• Proc. Res.

• Proc. Res. Table

• Plot

• PDF Plot

You can refer to Section General Widgets (left panel) to know what each of these fields repre-
sents.

The sections that contain the parameters for each experimental block are subdivided into fields
that are separated by one or more dots. You should not change this formatting when modifying
parameters files.

A fragment from a parameters file is shown below:

Paradigm: Adaptive
Intervals: 2 :False
Alternatives: 2 :False

each entry here has two or three elements separated by colons. The first element represents the
variable of interest, the second element its value, and the third element is a boolean value that
determines whether the inSummary checkbox will be checked or not (see Section Result Files
for more info on this). You can have one or more spaces between each element and the colon
separator. Each entry has to be written on a single line.

8.3 Block Presentation Position

We will define the serial position at which a block is presented during an experimental session
as its “presentation position”, and the serial position at which a block is stored in a parameters
file as its “storage point”.

Clicking the “Shuffle” button randomises the presentation positions of the blocks, but leaves the
order in which the blocks are stored in a parameters file untouched. The “Previous” and “Next”
buttons, as well as the “Jump to Block” chooser let you navigate across the blocks storage points,
while the “Previous Position”, and the “Next Position” buttons, as well as the “Jump to Position”
chooser let you navigate across the blocks presentation positions.

The block presentation positions are recorded in the parameters files. This is useful in case you
have to interrupt an experimental session whose block presentation positions had been random-
ized, before it is finished, and continue it at a later date. In this case you can save the parameters
file, reload it next time, and let the listener complete the experimental blocks that s/he had not run
because of the interruption. Notice that each time you load a parameters file pychoacoustics
will automatically move to the first block presentation position. Therefore, you will have to note

8.3. Block Presentation Position 72

pychoacoustics Documentation, Release 0.6.12

down what was the last block that your listener had run in the interrupted session (or find out by
looking at the results file) and move to the presentation position of the following block yourself.

By default clicking on the “Shuffle” button performs a simple full randomization of the block
presentation positions. However, you can specify more complex shuffling schemes in the “Shuf-
fling Scheme” text field. Let’s say you want to present two tasks in your experiment, a frequency
discrimination and an intensity discrimination task. Each task has four subconditions, (e.g. four
different base frequencies for the frequency discrimination task and four different base inten-
sities for the intensity discrimination task). Your parameters file will contain eight blocks in
total, blocks one to four are for the frequency discrimination task and blocks five to eight are for
the intensity discrimination task. During the experiment you want your participants to run first
the four frequency discrimination conditions in random order, and afterwards the four intensity
discrimination conditions in random order. To achieve this you can enter the following shuffling
scheme:

([1,2,3,4], [5,6,7,8])

basically you specify sequences (which can be nested) with your experimental blocks, sequences
within round parentheses () are not shuffled, while sequences within square brackets [] are
shuffled. Following the previous example, if you want to present first the four blocks of one of
the tasks (either frequency or intensity) in random order, and then the four blocks of the other
task in random order, you would specify your shuffling scheme as follows:

[[1,2,3,4], [5,6,7,8]]

on the other hand, if you want to present first the four blocks of one of the tasks (either frequency
or intensity) in sequential order and then the four blocks of the other task in sequential order,
you would specify your shuffling scheme as follows:

[(1,2,3,4), (5,6,7,8)]

you can have any variation you like on the theme, and the lists can be nested ad libitum, so for
example you could have:

[(1,2,[3,4]), (5,6,7,8)]

this would instruct pychoacoustics to present first either the four frequency conditions or
the four intensity conditions. The first two frequency conditions are presented sequentially,
while the last two are shuffled. To save typing you can give ranges rather than listing all blocks
individually. For example:

([1-4], [5-8])

is equivalent to:

([1,2,3,4], [5,6,7,8])

8.3. Block Presentation Position 73

pychoacoustics Documentation, Release 0.6.12

8.4 Displaying Task Instructions

Although it is common to simply give task instructions verbally for psychophysics experiments,
sometimes it is useful to present task instructions on the computer screen while the listener
is running a test. For example, there may be cases in which you want to your participants
to perform two different tasks within the same session. You may want your participants to
perform a frequency discrimination task with a pure tone for the first two blocks of trials, and
then run two blocks of an intensity discrimination task with the same stimulus. In these cases
it is necessary to present visually the task instructions on the computer screen either at the
beginning of each block, or only at the blocks where the task changes. pychoacoustics allows
you to store task instructions for each block of trials in the “Instructions” box on the left side
of the control window. The “Show Instructions At BP” box below allows you to set the block
positions at which the instructions will be shown. In the example above, in which the listener has
to complete two blocks of the frequency discrimination task first, and then complete two blocks
of the intensity discrimination task, you could input`1,2,3,4` in the “Show Instructions At BP”
box to show task instructions at the beginning of each block. Alternatively, you could input`1,3`
in the “Show Instructions At BP” box to show task instructions only when a new task is starting.
You should keep in mind that the “Show Instructions At BP” box sets the block positions at
which the instructions will be shown. Depending on the shuffling scheme that you’re using
these may be different from the block storage points (see Block Presentation Position above for
more info).

8.5 OS Commands

pychoacoustics can be instructed to run operating system (OS) commands at the end of an
experiment. This may be useful to run custom scripts that may analyse the result files, backup
result files or perform other operations.

In the control window, you can enter commands that you want to be executed at the end of a
specific experiment in the “End Command” box. This command will be saved in the parameters
file of the experiment.

In the “Preferences Dialog”, under the “Notifications” tab you can instead set a command that
will be executed at the end of each experiment you run, or 𝑛 blocks before the end of each
experiment you run. These commands should be entered in the “Execute custom command”
boxes.

The commands that you can execute are OS commands, therefore they are different on Linux
and Windows platforms. On Linux, for example, assuming that you store all your experimental
results in the directory “/home/foo/exp/”, you could automatically make a backup of these files
in the directory “/home/foo/backup/exp/” by using the command

$ rsync -r -t -v --progress -s /home/foo/exp/ /home/foo/backup/exp/

To make things more interesting, you can use some special strings to pass pychoacoustics
internal variables to your commands. For example, if you want to copy the results file of the
current experiment to the directory “/home/foo/res/”, you can use the command

8.4. Displaying Task Instructions 74

pychoacoustics Documentation, Release 0.6.12

$ cp [resFile] /home/foo/backup/exp/

here the special string [resFile] will be converted to the name of the file where
pychoacoustics has saved the data. To make sure that the command executes without errors
even if the name of the result file contains white spaces you should put the variable referring to
the filename between quotes:

$ cp "[resFile]" /home/foo/backup/exp/

A full listing of the internal pychoacoustics variables that can be called by special strings in
your commands is given in Table pychoacoustics variables

Table 1: pychoacoustics variables

String Variable
[resDir] Results file directory
[resFile] Plain-text block-summary results file
[resFileTrial] Plain-text trial-summary results file
[resFileSess] Plain-text session-summary results file
[resTable] Tabular block-summary results file
[resTableTrials] Tabular trial-summary results file
[resTableSess] Tabular session-summary results file
[listener] Listener label
[experimenter] Experimenter ID
[pdfPlot] pdf plot file of the session summary

8.6 Preferences Settings

All the settings that can be manipulated in the “Preferences” dialog, as well as the “Phones”
and “Experimenters” dialogs are stored in a file in the user home directory. On Linux this file
is located in:

~/.config/pychoacoustics/preferences.py

On Windows, assuming the root drive is “C” it is located in:

C:\\Users\username\.config/pychoacoustics\preferences.py

where username is your Windows login username. Although I strive to avoid this, the way
in which the preferences settings are stored may change in newer versions of pychoacoustics.
This means that when pychoacoustics is upgraded to a newer version it may sometimes not start
or throw out errors. To address these issues, please, try removing the old preferences file. Of
course this means that you’re going to lose all the settings that you had previously saved. To
avoid loosing any precious information, such as the calibration values of your headphones, write
down all important info before removing the preferences file.

8.6. Preferences Settings 75

pychoacoustics Documentation, Release 0.6.12

8.7 Response Mode

pychoacoustics was designed to run interactive experiments in which a listener hears some
stimuli and gives a response through a button or key press. This is the default mode, called “Real
Listener” mode. pychoacoustics provides two additional response modes, “Automatic” and
“Simulated Listener”. These modes can be set through the control window.

In “Automatic” response mode, rather than waiting for the listener to give a response,
pychoacoustics gives itself a response and proceeds to the next trial. The probability that this
automatic response is correct can also be set through the control window. The “Automatic” re-
sponse mode has two main functions. The first is testing and debugging an experiment. Rather
than running the experiment yourself, you can launch pychoacoustics in “Automatic” re-
sponse mode and check that everything runs smoothly, the program doesn’t crash, and the result
files are saved correctly. The second function of the automatic response mode is to allow passive
presentation of the stimuli. Some neuroimaging experiments (e.g. electroencephalographic or
functional magnetic resonance recordings) are performed with listeners passively listening to
the stimuli. These experiments usually also require that the program presenting the stimuli sends
triggers to the recording equipment to flag the start of a trial. Potentially this can also be done
in pychoacoustics (and we’ve done it in our lab for electroencephalographic recordings), but
at the moment this functionality is not implemented in a general way in the program.

The “Simulated Listener” mode is simply a hook that allows you to redirect the control flow
of the program to some code that simulates a listener and provides a response. Notice that
pychoacoustics does not provide any simulation code in itself, the simulation code has to be
written by you for a specific experiment. If no simulation code is written in the experiment file,
pychoacoustics will do nothing in simulated listenr mode. Further details on how to use the
“Simulated Listener” mode are provided in Section Simulations.

Both the “Automatic” and the “Simulated Listener” make recursive function calls. In Python
the number of recursive function calls that you can make is limited. If your experiment passes
this limit pychoacoustics will crash. The limit can be raised, up to a certain extent (which is
dependent on your operating system, see the documentation for the setrecursionlimit function
in the Python sys module) through the “Max Recursion Depth” setting that you can find in the
preferences window, or set through a command line option when running pychoacoustics
from the command line. Notice that the total number of recursive calls that your program will
make to complete an experiments will be higher than the number of trials in the experiment, so
you should set the “Max Recursion Depth” to a value higher than the number of trials you’re
planning to perform (how much higher I don’t know, you should find out by trial and error, a
few hundred points higher is usually sufficient). If you’re planning to run a very high number
of trials in “Automatic” or “Simulated Listener” mode, rather than raising the max recursion
depth, it may be better to split the experiment in several parts. You can always write a script
that automatically launches pychoacoustics from the command line instructing it to load a
given parameters file. On UNIX machines you could write a shell script to do that, but an easier
way is perhaphs to use python itself to write the script. For example, the python script could
be:

#! /usr/bin/env python
for i in range(5):

(continues on next page)

8.7. Response Mode 76

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
cmd = "pychoacoustics --file prms.prm -l L1 -s s1 -q -a \

--recursion-depth 3000"

here we’re telling pychoacoustics to load the parameters file prms.prm, set the listener
identifier to “L1” and the session label to s1. The -q option instructs the program to exit
at the end of the experiment. This way the recursion depth count is effectively restarted
each time pychoacoustics is closed and launched again from the script. When the
--recursion-depth option is passed as a command line argument, as in the example above,
it overrides the max recursion depth value set in the preferences window. If the -a option is
passed, as in the examples above, pychoacoustics will start automatically at the beginning
of each of the five series . This is useful for debugging or simulations, so that you can start the
script and leave the program complete unattended (you need to make sure that the “Shuffling
Mode” is not set to “Ask” and that you pass listener and session labels if you want the program
to run completely unattended).

8.7. Response Mode 77

9
Writing your own Experiments

9.1 First Steps

pychoacoustics can be easily extended with new experiments written by users. User-written
experiments need to reside in a Python package called labexp, and this package needs to be in
your Python path. No worries if you’re not familiar with packaging Python software, we’ll go
through the process of adding a new experiment step by step.

First of all, you need to create a directory called pychoacoustics_exp inside your home di-
rectory, and a sub-directory called labexp inside the pychoacoustics_exp directory. If you
don’t know where your home directory is located you can find out from a Python shell with the
following commands:

import os
os.path.expanduser('~')

You can create the pychoacoustics_exp and labexp directories from a Python shell as shown
below:

import os
dirPath = os.path.expanduser('~/pychoacoustics_exp/labexp/')
os.makedirs(dirPath)

Each user experiment will be written in a single file contained in the labexp directory. Let’s
imagine we want to create an experiment for a frequency discrimination task. We create a
file named freq.py in the labexp directory. In addition to the experiment file we need an
additional file that lists all the experiments contained in the labexp directory. This file must be
named __init__.py, and in our case it will have the following content:

__all__ = ["freq"]

here the variable __all__ is simply a Python list with the name of the experiment files. So, if
one day we decide to write a new experiment on, let’s say, level discrimination, in a file called
lev.py we would simply add it to the list in __init__.py:

78

pychoacoustics Documentation, Release 0.6.12

__all__ = ["freq",
"lev"]

For people familiar with packaging Python modules it should be clear by now that the labexp
folder is a Python package containing various modules (the experiment files). If at some point
we want to remove an experiment from pychoacoustics, for example because it contains a
bug that does not allow the program to start, we can simply remove it from the list in __init__.
py. Let’s go back to the freq.py file. Here we need to define three functions. For our example
the names of these functions would be:

initialize_freq()
select_default_parameters_freq()
doTrial_freq()

basically the function names consist of a fixed prefix, followed by the name of the experiment
file. So, in the case of the level experiment example, written in the file lev.py, the three
functions would be called:

initialize_lev()
select_default_parameters_lev()
doTrial_lev()

we’ll look at each function in detail in the next section. Briefly, the initialize_
function is used to set some general parameters and options for our experiment; the
select_default_parameters_ function lists all the widgets (text fields and choosers) of our
experiment and their default values; finally, the doTrial_ function contains the code that gen-
erates the sounds and plays them during the experiment.

9.1.1 Anatomy of a pychoacoustics experiment file

The initialize_ function

The initialize_ function of our frequency discrimination experiment is shown below:

1 def initialize_freq(prm):
2 exp_name = "Frequency Discrimination Demo"
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = ["Transformed Up-Down",
6 "Weighted Up-Down",
7 "UML",
8 "PSI"]
9

10 prm[exp_name]["opts"] = ["hasISIBox", "hasAlternativesChooser",
11 "hasFeedback"]
12

(continues on next page)

9.1. First Steps 79

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
13 prm[exp_name]['defaultAdaptiveType'] = "Geometric"
14 prm[exp_name]['defaultNIntervals'] = 2
15 prm[exp_name]['defaultNAlternatives'] = 2
16 prm[exp_name]["execString"] = "freq"
17 prm[exp_name]["version"] = "1"
18

19 return prm

When the function is called, it is passed a dictionary containing various parameters through the
prm argument. The function modifies this dictionary by adding the parameters of the experi-
ment, and returns the dictionary back to the main routine.

Let’s analyze the function for our experiment. On line 2 we give a label to the experiment,
this can be anything we want, except the label of an experiment already existing. On line 3
we add this experiment label to the list of “experimentsChoices”. On line 4 we create a new
sub-dictionary that has as a key the experiment label. Next we list the paradigms that our ex-
periment supports by creating a paradigmChoices key and giving the names of the supported
paradigms as a list. The paradigms listed here must be within the set of paradigms supported
by pychoacoustics (see Section Available Paradigms for a description of the paradigms cur-
rently supported). In the next line we set an opts key containing a list of options. The full
list of options that can be set here is described in details in Section The Experiment “opts”.
In brief, for our experiment we want to have a widget to set the silent interval (ISI) between
presentation intervals (hasISIBox), a widget to choose the number of response alternatives
(hasAlternativesChooser), and a widget to set the feedback on or off for a given block of
trials (hasFeedback).

In the next line we specify defaultAdaptiveType, the default type of adaptive track that will
be selected when the experiment is loaded, this could be either “Geometric”, or “Arithmetic”.
Specifying a “defaultAdaptiveType” is optional. The type of the adaptive procedure can in any
case be changed later by the experimenter in the control window. In the next two lines we
specify the default number of intervals, and the default number of alternatives that will be used
when the experiment is loaded. Since we have inserted the “hasAlternativesChooser” option,
the number of intervals and alternatives can be later changed by the experimenter using the
appropriate choosers in the control window. The next line of the initialize_ function sets
the execString of our experiment. This must be the name of our experiment file, so in our
case freq. Finally, we give our experiment a version label. This is optional, but it can be very
useful as this version label will be stored in the result files when the experiment is run. This
makes it possible to track which version of the experiment was used in a given session.

Before we proceed, a note on the use of a function called QApplication.translate is neces-
sary. You may occasionally see this function in pychoacoustics experiment files and in this
manual. This function serves to translate strings from one language to another. For the mo-
ment it doesn’t really do much in pychoacoustics because string translation is not currently
functional for the control window, it is only functional for the response box. This function
takes three string arguments, and the text to be translated is the middle argument. For example,
in the initialize_ function above, we could have written QApplication.translate("",
"Transformed Up-Down", "") instead of Transformed Up-Down. You don’t need to use
this function in your experiments. If you do, you need to import the QApplication. How to

9.1. First Steps 80

pychoacoustics Documentation, Release 0.6.12

do this depends on which version of PyQt you’re using, as shown below:

from PyQt4.QtGui import QApplication #if you're using PyQt4
from PySide.QtGui import QApplication #if you're using PySide
from PyQt5.QtWidgets import QApplication #if you're using PyQt5

The select_default_parameters_ function

All the widgets (text fields and choosers) needed for an experiment are defined in the
select_default_parameters_ function. For our frequency discrimination experiment, the
function looks as follows:

1 def select_default_parameters_freq(parent, paradigm, par):
2

3 field = []
4 fieldLabel = []
5 chooser = []
6 chooserLabel = []
7 chooserOptions = []
8

9 fieldLabel.append("Frequency (Hz)")
10 field.append(1000)
11

12 fieldLabel.append("Difference (%)")
13 field.append(20)
14

15 fieldLabel.append("Level (dB SPL)")
16 field.append(50)
17

18 fieldLabel.append("Duration (ms)")
19 field.append(180)
20

21 fieldLabel.append("Ramps (ms)")
22 field.append(10)
23

24

25 chooserOptions.append(["Right",
26 "Left",
27 "Both"])
28 chooserLabel.append("Ear:")
29 chooser.append("Right")
30

31 prm = {}
32 prm['field'] = field
33 prm['fieldLabel'] = fieldLabel
34 prm['chooser'] = chooser
35 prm['chooserLabel'] = chooserLabel

(continues on next page)

9.1. First Steps 81

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
36 prm['chooserOptions'] = chooserOptions
37

38 return prm

The select_default_parameters_ function accepts three arguments, “parent” is simply a
reference to the pychoacoustics application, “paradigm” is the paradigm with which the func-
tion has been called, while “par” is a variable that can hold some special values for initial-
izing the function. The use of the “par” argument will be discussed later on when proce-
dures with interleaved tracks will be described. For the time being you should just know that
the select_default_parameters_ should always have this argument. From line three to
line seven, we create a series of empty lists. The field and fieldLabel lists will hold
the default values of our text field widgets, and their labels, respectively. The chooser and
chooserLabel lists will likewise hold the default values of our chooser widgets, and their la-
bels, while the chooserOptions list will hold the possible values that our choosers can take.
On lines 9 to 29 we populate these lists for our frequency discrimination experiment. From
line 31 to line 36 we insert in a dictionary the field, fieldLabel, chooser, chooserLabel
and chooserOptions lists that we previously creaetd and populated. Finally, on line 38, the
function returns this dictionary.

The doTrial_ function

The doTrial_ function is called each time a trial is started, and is responsible for generat-
ing the sounds and presenting them to the listener. The doTrial_ function for our frequency
discrimination experiment is shown below:

1 def doTrial_freq(parent):
2

3 currBlock = 'b'+ str(parent.prm['currentBlock'])
4 if parent.prm['startOfBlock'] == True:
5 parent.prm['adaptiveParam'] = \
6 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index("Difference (%)")]
7 parent.writeResultsHeader('log')
8

9 frequency = \
10 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Frequency (Hz)")]
11 level = \
12 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Level (dB SPL)")]
13 duration = \
14 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Duration (ms)")]
15 ramps = \
16 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Ramps (ms)")]
(continues on next page)

9.1. First Steps 82

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
17 channel = \
18 parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].

→˓index("Ear:")]
19 phase = 0
20

21 correctFrequency = frequency + (frequency*parent.prm['adaptiveParam
→˓'])/100

22 stimulusCorrect = pureTone(correctFrequency, phase, level,␣
→˓duration,

23 ramps, channel, parent.prm['sampRate'],
24 parent.prm['maxLevel'])
25

26 stimulusIncorrect = []
27 for i in range((parent.prm['nIntervals']-1)):
28 thisSnd = pureTone(frequency, phase, level, duration, ramps,␣

→˓channel,
29 parent.prm['sampRate'], parent.prm['maxLevel

→˓'])
30 stimulusIncorrect.append(thisSnd)
31

32 parent.playRandomisedIntervals(stimulusCorrect, stimulusIncorrect)

As you can see on the first line, the doTrial_ function is passed as an argument its parent.
This is important because the parent contains a dictionary with the parameters for the current
experiment (parent.prm). The parameters for each stored block of the experiment are stored in
the parent.prm dictionary with keys starting with b followed by the block number. For exam-
ple parent.prm['b3'] contains the parameters for the third stored block. The current block
number is stored in parent.prm['currentBlock'], and on line 3 we retrieve the dictionary
key for the current block. On line 4 we start an if block that is executed only at the first trial of
each block. In this block we retrieve the % frequency difference between the standard and the
comparison stimuli for the first trial, and we store it in the parent.prm['adaptiveParam']
variable. Since we’re using an adaptive procedure, this variable will be automatically increased
or decreased by pychoacoustics on successive trials on the bases of the responses given by
the listener. On line 7 we tell pychoacoustics to write the header of the ‘log’ result files (see
Log Results Files).

On lines 9-16 we read off the values of the text field widgets for the current block of trials. The
values of these field widgets are stored in the list parent.prm[currBlock]['field'], and
we exploit the label of each text field widget to retrieve its index in the list. For example parent.
prm['fieldLabel'].index("Frequency (Hz)") retrieves the index of the text widget that
stores the frequency of the standard tone for the current block of trials. On line 18 we read
off the value of the only chooser widget for the current block of trials. The values of chooser
widgets are stored in the list parent.prm[currBlock]['chooser'], and we exploit the label
of each chooser widget to retrieve its index in the list as we did for text field widgets.

Our next step will be to generate the stimuli for the trial. In a X-Intervals task we have to
generate X stimuli. In our case, the standard stimuli will have always the same frequency, we
retrieved its value on lines 9-10 of our doTrial_ function. If a listener presses the button cor-

9.1. First Steps 83

pychoacoustics Documentation, Release 0.6.12

responding to one of the the standard stimuli his response will be incorrect. For this reason
we will store the standard stimuli in a list called stimulusIncorrect = []. The compari-
son stimulus will be instead stored in a variable called stimulusCorrect. The frequency of
the comparison stimulus, which can vary from trial to trial, depending on the current value of
parent.prm['adaptiveParam'] is computed on line 21. On lines 22-24 we generate the
stimulus using the pureTone function that is available in the sndlib module. Note that in or-
der to access this function you need to import it by adding the following line at the top of the
freq.py file where the experiment is stored:

from pychoacoustics.sndlib import pureTone

Note also that we need to pass the current samplig rate and the current maximum output level
of our headphones (see Edit Phones Dialog) to the pureTone function. Their values are stored
respectively in the parent.prm['sampRate'] and parent.prm['maxLevel'] variables. On
lines 26-30 we generate and store the standard stimuli in the stimulusIncorrect list. The
number of standard stimuli to generate will be equal to the number of intervals minus one. The
number of intervals is stored in the parent.prm['nIntervals'] variable. Finally on line 32
we call the parent.playRandomisedIntervals function to play the stimuli. This function
requires two arguments, the correct stimulus, and a list containing the incorrect stimuli. That’s
it, our frequency discrimination experiment is ready and we can test it on pychoacoustics.

Adding support for the Constant Paradigm

So far our frequency discrimination experiment supports only adaptive paradigms.

Adding support for the constant paradigm, in which the frequency difference between the stan-
dard and comparison stimuli is fixed across a block of trials is easy. All we need to do is
add “Constant m-Intervals n-Alternatives” to the list of paradigms supported paradims in the
initialize_ function:

prm[exp_name]["paradigmChoices"] = ["Transformed Up-Down",
"Weighted Up-Down",
"UML",
"PSI"
"Constant m-Intervals n-

→˓Alternatives"]

Now our frequency discrimination task supports also the constant paradigm.

Showing/Hiding Widgets Dynamically

Often you may want to write a single experiment that can handle a number of different exper-
imental conditions. This usually leads to a growing number of widgets in the control window
that can be distracting. To address this issue, in pychoacoustics it is possible to dinamically
show or hide widgets depending on the value taken by chooser widgets. To do this, you need to
write a function called get_fields_to_hide_ that specifies the conditions upon which certain
widgets are shown or hidden.

9.1. First Steps 84

pychoacoustics Documentation, Release 0.6.12

For a practical example, let’s extend the frequency discrimination experiment described in the
sections above so that it can handle not only conditions in which the standard frequency is
fixed, but also conditions in which the standard frequency is roved from trial to trial within a
specified frequency range. In the select_default_parameters_ function of our frequency
discrimination experiment we had a text field for setting the standard frequency:

fieldLabel.append("Frequency (Hz)")
field.append(1000)

now we’ll add two additional text fields to set the frequency range for the roved-frequency case:

fieldLabel.append("Frequency (Hz)")
field.append(1000)

fieldLabel.append("Min. Frequency (Hz)")
field.append(250)

fieldLabel.append("Max. Frequency (Hz)")
field.append(4000)

we also add a chooser to control whether for the current block the standard frequency should be
fixed or roved:

chooserOptions.append(["Fixed",
"Roved"])

chooserLabel.append("Standard Frequency:")
chooser.append("Fixed")

The get_fields_to_hide_ for this experiment is shown below:

1 def get_fields_to_hide_freq(parent):
2 if parent.chooser[parent.prm['chooserLabel'].index("Standard␣

→˓Frequency:")].currentText() == "Fixed":
3 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Min.␣

→˓Frequency (Hz)"),
4 parent.prm['fieldLabel'].index("Max.␣

→˓Frequency (Hz)")]
5 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Frequency␣

→˓(Hz)")]
6 elif parent.chooser[parent.prm['chooserLabel'].index("Standard␣

→˓Frequency:")].currentText() == "Roved":
7 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Frequency␣

→˓(Hz)")]
8 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Min.␣

→˓Frequency (Hz)"),
9 parent.prm['fieldLabel'].index("Max.␣

→˓Frequency (Hz)")]

As for the other experiment functions that we have discussed before, the actual name is the

9.1. First Steps 85

pychoacoustics Documentation, Release 0.6.12

concatenation of a prefix, in this case get_fields_to_hide_, and the name of the experi-
ment file, in this case freq. As you can see on line 1, this function takes as an argument
parent, which contains the lists of widgets for the current experiment. We need to tell the
get_fields_to_hide_ function that if the standard frequency is fixed, it should show only
the Frequency (Hz) text field, and hide the Min. Frequency (Hz) and Max. Frequency
(Hz) text fields. Vice-versa, if the standard frequency is roved, it should show only the Min.
Frequency (Hz) and Max. Frequency (Hz) text fields, and hide the Frequency (Hz) text
field. On line 2 we start an if block which will be executed if the value of the Standard
Frequency chooser (retrieved by the currentText attribute), is set to Fixed. Note how we
exploit once again the chooserLabel to find the index of the chooser we want with parent.
prm['chooserLabel'].index("Standard Frequency:"). Next, we define two lists, one
containing the indexes of the fields to hide parent.fieldsToHide, and one containing the
indexes of the fields to show parent.fieldsToShow. Once more we exploit the fieldLabel
to retrieve the indexes of the fields we want to get (e.g. parent.prm['fieldLabel'].
index("Min. Frequency (Hz)")). From line 6 to line 9 we handle the case in which the
standard frequency is roved. The logic of the code is the same as for the fixed standard fre-
quency case.

To complete the experiment we need to add a couple of lines to the doTrial_ function to handle
the case in which the standard frequency is roved. The new function is shown below:

1 def doTrial_freq2(parent):
2 currBlock = 'b'+ str(parent.prm['currentBlock'])
3 if parent.prm['startOfBlock'] == True:
4 parent.prm['adaptiveParam'] = \
5 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Difference (%)")]
6 parent.writeResultsHeader('log')
7

8 frequency = \
9 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Frequency (Hz)")]
10 minFrequency = \
11 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Min. Frequency (Hz)")]
12 maxFrequency = \
13 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Max. Frequency (Hz)")]
14 level = \
15 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Level (dB SPL)")]
16 duration = \
17 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Duration (ms)")]
18 ramps = \
19 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Ramps (ms)")]
20 phase = 0

(continues on next page)

9.1. First Steps 86

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
21 channel = \
22 parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index(

→˓"Ear:")]
23 stdFreq = \
24 parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].

→˓index("Standard Frequency:")]
25

26 if stdFreq == "Roved":
27 frequency = random.uniform(minFrequency, maxFrequency)
28 correctFrequency = frequency + (frequency*parent.prm['adaptiveParam

→˓'])/100
29 stimulusCorrect = pureTone(correctFrequency, phase, level, duration,
30 ramps, channel, parent.prm['sampRate'],
31 parent.prm['maxLevel'])
32

33 stimulusIncorrect = []
34 for i in range((parent.prm['nIntervals']-1)):
35 thisSnd = pureTone(frequency, phase, level, duration, ramps,␣

→˓channel,
36 parent.prm['sampRate'], parent.prm['maxLevel

→˓'])
37 stimulusIncorrect.append(thisSnd)
38 parent.playRandomisedIntervals(stimulusCorrect, stimulusIncorrect)

On lines 10-13 we read off the minimum and maximum frequency values for the roved-standard
case. On line 23-24 we retrieve the value of the Standard Frequency: chooser. On lines
26-27 we state that if the value of the standard frequency chooser is equal to Roved, then the
standard frequency for that trial should be drawn from a uniform distribution ranging from
minFrequency to maxFrequency. The rest of the function is unchanged. Note that we’re
using the a Python module called random on line 27, so we need to add import random at the
top of our freq.py file.

It is also possible to show/hide choosers. Let’s extend the frequency-discrimination experiment
by allowing for the possibility that the standard frequency is roved on a log scale (which in fact
would be a better choice given that frequency scaling in the auditory system is approximately
logarithmic). To do this, we first add a new chooser to set the roving scale:

chooserOptions.append(["Linear",
"Log"])

chooserLabel.append("Roving Scale:")
chooser.append("Linear")

Because this chooser is useful only when the standard frequency is roved, we’ll tell the
get_fields_to_hide_ function to show/hide it depending on the value of the Standard
Frequency chooser. The new get_fields_to_hide_ function is shown below:

1 def get_fields_to_hide_freq(parent):
(continues on next page)

9.1. First Steps 87

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
2 if parent.chooser[parent.prm['chooserLabel'].index("Standard␣

→˓Frequency:")].currentText() == "Fixed":
3 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Min.␣

→˓Frequency (Hz)"),
4 parent.prm['fieldLabel'].index("Max.␣

→˓Frequency (Hz)")]
5 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Frequency␣

→˓(Hz)")]
6 parent.choosersToHide = [parent.prm['chooserLabel'].index(

→˓"Roving Scale:")]
7 elif parent.chooser[parent.prm['chooserLabel'].index("Standard␣

→˓Frequency:")].currentText() == "Roved":
8 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Frequency␣

→˓(Hz)")]
9 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Min.␣

→˓Frequency (Hz)"),
10 parent.prm['fieldLabel'].index("Max.␣

→˓Frequency (Hz)")]
11 parent.choosersToShow = [parent.prm['chooserLabel'].index(

→˓"Roving Scale:")]

We’ve just added two lines. Line 6 gets executed if the Standard Frequency chooser is set
to Fixed, and adds the Roving Scale chooser to the parent.choosersToHide list. Line
11 gets executed if the Standard Frequency chooser is set to Roved, and adds the Roving
Scale chooser to the parent.choosersToShow list.

Finally, we need to add/modify a couple of lines of the doTrial_ function. First of all we need
to read off the value of the new Roving Scale chooser:

rovingScale = \
parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index(

→˓"Roving Scale:")]

second, we need to set the standard frequency depending on whether it is drawn from a linear
or a logarithmic distribution:

if stdFreq == "Roved":
if rovingScale == "Linear":

frequency = random.uniform(minFrequency, maxFrequency)
elif rovingScale == "Log":

frequency = 10**(random.uniform(log10(minFrequency),␣
→˓log10(maxFrequency)))

Note that we’re using the log10 function from numpy here, so we need to add from numpy
import log10 at the top of our freq.py file.

9.1. First Steps 88

pychoacoustics Documentation, Release 0.6.12

9.2 Writing a “Constant 1-Interval 2-Alternatives”
Paradigm Experiment

In the next paragraphs we’ll see an example of an experiment using the “Constant 1-Interval
2-Alternatives” paradigm. The experiment a is simple “Yes/No” signal detection task. On each
trial the listener is presented with a single interval which may or may not contain a pure tone,
and s/he has to tell if the tone was present or not.

The initialize_ function for the signal detection experiment is shown below, since the gen-
eral framework for writing an experiment is the same as for the adaptive paradigm, only the
differences from an adaptive-paradigm experiment will be highlited.

1 def initialize_sig_detect(prm):
2 exp_name = "Signal Detection Demo"
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = ["Constant 1-Interval 2-

→˓Alternatives"]
6 prm[exp_name]["opts"] = ["hasFeedback"]
7 prm[exp_name]["buttonLabels"] = ["Yes", "No"]
8 prm[exp_name]['defaultNIntervals'] = 1
9 prm[exp_name]['defaultNAlternatives'] = 2

10

11 prm[exp_name]["execString"] = "sig_detect"
12 return prm

On line 5 we list the available paradigms for the experiment, in this case the only paradigm
possible is Constant 1-Interval 2-Alternatives. On line 7 we insert hasFeedback to
the list of experiment options, so that feedback can be provided at the end of each trial. Since
we’ll have a single observation interval we don’t add the hasISIBox option, because we don’t
need to have a silent inteval between observation intervals. On line 7, we set the labels for the
buttons, which represent the two response alternatives: “Yes” or “No”. On line 8 and line 9 we
set the number of intervals and the number of response alternatives.

The select_default_parameters_ function for the signal detection experiment is shown
below:

1 def select_default_parameters_sig_detect(parent, par):
2

3 field = []
4 fieldLabel = []
5 chooser = []
6 chooserLabel = []
7 chooserOptions = []
8

9 fieldLabel.append(parent.tr("Frequency (Hz)"))
10 field.append(1000)
11

(continues on next page)

9.2. Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment 89

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
12 fieldLabel.append(parent.tr("Duration (ms)"))
13 field.append(2)
14

15 fieldLabel.append(parent.tr("Ramps (ms)"))
16 field.append(4)
17

18 fieldLabel.append(parent.tr("Level (dB SPL)"))
19 field.append(30)
20

21 chooserOptions.append([parent.tr("Right"), parent.tr("Left"),␣
→˓parent.tr("Both")])

22 chooserLabel.append(parent.tr("Channel:"))
23 chooser.append(parent.tr("Both"))
24

25 prm = {}
26 prm['field'] = field
27 prm['fieldLabel'] = fieldLabel
28 prm['chooser'] = chooser
29 prm['chooserLabel'] = chooserLabel
30 prm['chooserOptions'] = chooserOptions
31

32 return prm

there is nothing really new here compared to experiments with adaptive paradigms that we have
seen before. We initialize the text fields that we need in order to set the frequency duration and
level of the signal. We also initialize a chooser to set the channels on which the signal should
be presented.

The doTrial_ function for the signal detection task is shown below:

1 def doTrial_sig_detect(parent):
2

3 currBlock = 'b'+ str(parent.prm['currentBlock'])
4 if parent.prm['startOfBlock'] == True:
5 parent.writeResultsHeader('log')
6 parent.prm['conditions'] = ["Yes","No"]
7

8 parent.currentCondition = random.choice(parent.prm['conditions'])
9 if parent.currentCondition == 'Yes':

10 parent.correctButton = 1
11 elif parent.currentCondition == 'No':
12 parent.correctButton = 2
13

14 freq = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].
→˓index("Frequency (Hz)")]

15 dur = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].
→˓index("Duration (ms)")]

(continues on next page)

9.2. Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment 90

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
16 ramps = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index("Ramps (ms)")]
17 lev = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index("Level (dB SPL)")]
18 phase = 0
19 channel = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel

→˓'].index(parent.tr("Channel:"))]
20

21 if parent.currentCondition == 'No':
22 lev = -200
23 sig = pureTone(freq, phase, lev, dur, ramps, channel, parent.prm[

→˓'sampRate'], parent.prm['maxLevel'])
24

25

26 parent.playSequentialIntervals([sig])

For experiments using the “Constant 1-Interval 2-Alternatives” paradigm it is necessary to list
the experimental conditions in the doTrial_ function. We do this on line 6. On line 8, we bind
the response buttons to the correct response. Since the button number 1 is the “Yes” button,
we say that in the case of a signal trial (parent.currentCondition == "Yes") the correct
button to press is the button number 1, otherwise the correct button to press is the button number
2.

On lines 14-23 we read off the values of the text fields and generate the sound to play (signal
or silence) according to the experimental condition. Finally, on line 25 we use the parent.
playSequentialIntervals function to present the sound to the listener. This function ac-
cepts as an argument a list of sounds to play sequentially. In our case we have only a single sound
to insert in the list. More details on the playSequentialIntervals function are provided in
Section The Play Sound Functions.

9.3 Writing an experiment for the Transformed Up-
Down Interleaved, Weighted Up-Down Interleaved,
and Multiple Constants m-Intervals n-Alternatives
Paradigms

This section will walk you through an example of an experiment that can be used with the trans-
formed up-down interleaved and weighted up-down interleaved paradigms. These paradigms
are simple extensions of the transformed up-down and weighted up-down paradigms in which
multiple independent adaptive tracks are run simultaneously and are randomly interleaved in a
single block of trials.

Because experiments that support the transformed up-down interleaved and weighted up-down
interleaved paradigms can be easily modified to support also the multiple constants m-intervals
n-alternatives paradigm, this paradigm will be also added in our example experiment. This
paradigm is a simple extension of the constant m-intervals n-alternatives paradigm, in which

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

91

pychoacoustics Documentation, Release 0.6.12

rather than having a single constant difference between the standard and comparison tones,
multiple constant differences are tested in a single block of trials.

The example experiment that we’ll look at is a simple signal detection in quiet experiment, that
could be used to measure an audiogram. For this reason it is called “Demo Audiogram Multiple
Frequencies” (it can be found in the file audiogram_mf.py in the default_experiments
folder). The experiment can be used to setup a virtually unlimited number of adaptive tracks,
and each track can be used to track the signal-detection threshold for a specific frequency.

As for the multiple constants procedure, the experiment could be similarly used to measure per-
cent correct performance for tones of different frequencies presented at the same level. However,
a more interesting possibility is to use the experiment to measure percent correct performance
for the same frequency at different fixed levels. This could then be used to derive a psychometric
function relating percent correct performance to signal level.

The initialize_ function of the experiment is shown below:

1 def initialize_audiogram_mf(prm):
2 exp_name = QApplication.translate("","Demo Audiogram Multiple␣

→˓Frequencies","")
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = [QApplication.translate("",

→˓"Transformed Up-Down Interleaved",""),
6 QApplication.translate("",

→˓"Weighted Up-Down Interleaved",""),
7 QApplication.translate("",

→˓"Multiple Constants m-Intervals n-Alternatives","")]
8

9

10 prm[exp_name]["opts"] = ["hasISIBox", "hasAlternativesChooser",
→˓"hasFeedback",

11 "hasNTracksChooser"]
12 prm[exp_name]['defaultAdaptiveType'] = QApplication.translate("",

→˓"Arithmetic","")
13 prm[exp_name]['defaultNIntervals'] = 2
14 prm[exp_name]['defaultNAlternatives'] = 2
15 prm[exp_name]['defaultNTracks'] = 4
16

17 prm[exp_name]["execString"] = "audiogram_mf"
18 prm[exp_name]["version"] = "1"
19

20 return prm

the first part of the function doesn’t need much explanation if you’ve follwed the previous ex-
amples. The experiments opts has a new item hasNTracksChooser. This option allows the
user to dynamically change the number of adaptive tracks to be used (or the number of con-
stant differences to measure for the multiple constants paradigm). Besides this, the only new
thing compared to previous examples is that we also specify the default number of tracks with
prm[exp_name]['defaultNTracks'] = 4.

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

92

pychoacoustics Documentation, Release 0.6.12

The select_default_parameters_ for the “Demo Audiogram Multiple Frequencies” exper-
iment is shown below:

1 def select_default_parameters_audiogram_mf(parent, par):
2

3 nDifferences = par['nDifferences']
4

5 field = []
6 fieldLabel = []
7 chooser = []
8 chooserLabel = []
9 chooserOptions = []

10

11 for i in range(nDifferences):
12 fieldLabel.append(parent.tr("Frequency (Hz) " + str(i+1)))
13 field.append(1000+1000*i)
14 fieldLabel.append(QApplication.translate("","Level (dB SPL) " +␣

→˓str(i+1),""))
15 field.append(50)
16

17 fieldLabel.append(QApplication.translate("","Bandwidth (Hz)",""))
18 field.append(10)
19

20 fieldLabel.append(QApplication.translate("","Duration (ms)",""))
21 field.append(180)
22

23 fieldLabel.append(QApplication.translate("","Ramps (ms)",""))
24 field.append(10)
25

26

27 chooserOptions.append([QApplication.translate("","Right",""),
28 QApplication.translate("","Left",""),
29 QApplication.translate("","Both","")])
30 chooserLabel.append(QApplication.translate("","Ear:",""))
31 chooser.append(QApplication.translate("","Right",""))
32 chooserOptions.append([QApplication.translate("","Sinusoid",""),
33 QApplication.translate("","Narrowband Noise","

→˓")])
34 chooserLabel.append(QApplication.translate("","Type:",""))
35 chooser.append(QApplication.translate("","Sinusoid",""))
36

37 prm = {}
38 prm['field'] = field
39 prm['fieldLabel'] = fieldLabel
40 prm['chooser'] = chooser
41 prm['chooserLabel'] = chooserLabel
42 prm['chooserOptions'] = chooserOptions

(continues on next page)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

93

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
43

44 return prm

The transformed/weighted up-down interleaved paradigms can be run with any number of adap-
tive tracks. Similarly, the multiple constants m-intervals n-alternatives procedure can be run
with any number of constant differences between the standard and comparison intervals. All the
user has to do is select the desired number of adaptive tracks, or constant differences from the ap-
propriate chooser in the pychoacoustics control window. select_default_parameters_
function, however, needs to know how many tracks or how many constant differences are being
run in order to set up the necessary fields storing the experimental variables. The par argu-
ment that is always passed to the select_default_parameters_ function has the purpose of
passing additional parameters to dinamycally modify the behavior of the function in cases like
this.

In the case of paradigms with interleaved tracks, or multiple constant differences the par argu-
ment has a key called nDifferences that specifies the number of tracks or constant differences.
For the current experiment we retieve this value on line 3. Then, on lines 11-15 we set up a for
loop in which we add a field to store the frequency and level of the tones for each adaptive track.
The rest of the function is similar to previous examples, so it will not be discussed further.

The get_fields_to_hide_ function for the “Demo Audiogram Multiple Frequencies” exper-
iment is shown in the code block below. Again, nothing new here.

1 def get_fields_to_hide_audiogram_mf(parent):
2 if parent.chooser[parent.prm['chooserLabel'].index(QApplication.

→˓translate("","Type:",""))].currentText() == QApplication.translate("
→˓","Sinusoid",""):

3 parent.fieldsToHide = [parent.prm['fieldLabel'].
→˓index(QApplication.translate("","Bandwidth (Hz)",""))]

4 else:
5 parent.fieldsToShow = [parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Bandwidth (Hz)",""))]

The doTrial_ function for the “Demo Audiogram Multiple Frequencies” experiment is shown
below:

1 def doTrial_audiogram_mf(parent):
2 currBlock = 'b'+ str(parent.prm['currentBlock'])
3 nDifferences = parent.prm['nDifferences']
4 if parent.prm['startOfBlock'] == True:
5 parent.prm['additional_parameters_to_write'] = {}
6 parent.prm['conditions'] = []
7 parent.prm['adaptiveParam'] = []
8 for i in range(nDifferences):
9 parent.prm['conditions'].append(str(parent.prm[currBlock][

→˓'field'][parent.prm['fieldLabel'].index(QApplication.translate("",
→˓"Frequency (Hz) " + str(i+1),""))]))

10 parent.prm['adaptiveParam'].append(parent.prm[currBlock][
(continues on next page)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

94

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
→˓'field'][parent.prm['fieldLabel'].index(QApplication.translate("",
→˓"Level (dB SPL) " + str(i+1),""))])

11 parent.writeResultsHeader('log')
12

13 frequency = []
14 for i in range(nDifferences):
15 frequency.append(parent.prm[currBlock]['field'][parent.prm[

→˓'fieldLabel'].index(QApplication.translate("","Frequency (Hz) " +␣
→˓str(i+1),""))])

16

17 parent.currentCondition = parent.prm['conditions'][parent.prm[
→˓'currentDifference']] #this is necessary for counting correct/total␣
→˓trials

18 correctLevel = parent.prm['adaptiveParam'][parent.prm[
→˓'currentDifference']]

19

20 currentFrequency = frequency[parent.prm['currentDifference']]
21 bandwidth = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Bandwidth (Hz)",""))]
22 phase = 0
23

24 incorrectLevel = -200
25 duration = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Duration (ms)",""))]
26 ramps = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Ramps (ms)",""))]
27 channel = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel

→˓'].index(QApplication.translate("","Ear:",""))]
28 sndType = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel

→˓'].index(QApplication.translate("","Type:",""))]
29

30 if sndType == QApplication.translate("","Narrowband Noise",""):
31 if bandwidth > 0:
32 parent.stimulusCorrect = steepNoise(currentFrequency-

→˓(bandwidth/2), currentFrequency+(bandwidth/2), correctLevel -␣
→˓(10*log10(bandwidth)),

33 duration, ramps, channel,␣
→˓parent.prm['sampRate'], parent.prm['maxLevel'])

34 else:
35 parent.stimulusCorrect = pureTone(currentFrequency, phase,␣

→˓correctLevel, duration, ramps, channel, parent.prm['sampRate'],␣
→˓parent.prm['maxLevel'])

36 elif sndType == QApplication.translate("","Sinusoid",""):
37 parent.stimulusCorrect = pureTone(currentFrequency, phase,␣

→˓correctLevel, duration, ramps, channel, parent.prm['sampRate'],␣
→˓parent.prm['maxLevel'])

(continues on next page)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

95

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
38

39

40 parent.stimulusIncorrect = []
41 for i in range((parent.prm['nIntervals']-1)):
42 thisSnd = pureTone(currentFrequency, phase, incorrectLevel,␣

→˓duration, ramps, channel, parent.prm['sampRate'], parent.prm[
→˓'maxLevel'])

43 parent.stimulusIncorrect.append(thisSnd)
44 parent.playRandomisedIntervals(parent.stimulusCorrect, parent.

→˓stimulusIncorrect)

note that on line 3 we retrieve the number of adaptive tracks (for adaptive interleaved paradigms),
or the number of constant differences (for multiple constant paradigms) that we’re currently
running. This parameter is stored in the parent.prm dictionary.

At the start of a block of trials (cfr. line 4) we set up a number of parameters. Among these
there are two in particular that need some explanation. The ``parent.prm[‘adaptiveParam’] on
line 7 is a list that is populated in the for loop starting on line 9 with the initial values of the
parameter that is adaptively varying for each track. The ``parent.prm[‘conditions’] on the other
hand is a parameter that is used only when the experiment is run with the multiple constants
m-intervals n-alternatives paradigm. It’s a list of labels for each “condition” that is being run in
the experiment, that is for each constant difference that is being tested.

On lines 13-15 we retrieve the frequencies of the tones used for each track or constant difference.

On line 17 we retrieve the label of the current condition and store it in the parent.
currentCondition variable. Thisvariable will be used by pychoacoustics for keeping
count of the correct and total number of trials for each constant difference when using the multi-
ple constants paradigm. Note how the parent.prm['currentDifference'] variable is used
for this purpose. This variable is the index to the current track or current cosnatnt difference
that is being currently tested. This variable is set outside of the doTrial_ function, (a random
track or constant difference is chosen for each trial) but we can retrieve its value through the
parent handle.

On line 18 we make use of the parent.prm['currentDifference'] variable again, this time
to retrieve the level of the comparison stimulus for the track or constant difference that is run
on the current trial. The rest of the function is not different from the doTrial_ functions used
in transformed/weighted up-down paradigms with non-interleaved tracks, and should be easy to
follow if you’ve followed the previous examples.

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

96

pychoacoustics Documentation, Release 0.6.12

9.3.1 Writing a matching experiment using interleaved adaptive
tracks

The transformed up-down and weighted up-down interleaved procedures can be used to write
matching experiments. As described by [Jesteadt1980], two interleaved adaptive tracks can be
used to target points on the psychometric function that are symmetric around the 50% point
(e.g. 71% and 29%), and then average the threshold in each track in order to estimate the point
of subjective equality. For example, in a level-matching experiment one track could target the
point at which the listener judges the comparison tone to be louder than the standard tone 71%
of the time, while the other track targets the point at which the listener judges the comparison
tone to be louder than the standard 29% of the time (or equivalently, softer than the standard
71% of the time).

In this section we’ll show how to write in pychoacoustics a level-matching experiment sim-
ilar to the one described by [Jesteadt1980]. This experiment is one of the default experiments
available in pychoacoustics, and is called Demo Level Matching.

The initialize_ function of the experiment is shown in the code block below.

1 def initialize_lev_match(prm):
2 exp_name = "Demo Level Matching"
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = ["Transformed Up-Down Interleaved

→˓",
6 "Weighted Up-Down Interleaved"]
7

8 prm[exp_name]["opts"] = ["hasISIBox", "hasAlternativesChooser"]
9 prm[exp_name]['defaultAdaptiveType'] = QApplication.translate("",

→˓"Arithmetic","")
10 prm[exp_name]['defaultNIntervals'] = 2
11 prm[exp_name]['defaultNAlternatives'] = 2
12 prm[exp_name]['defaultNTracks'] = 2
13 prm[exp_name]["execString"] = "lev_match"

among the paradigmChoices we include the “Transformed Up-Down Interleaved”, and the
“Weighted Up-Down Interleaved”. The experiment has just two experiment opts: one to add an
ISI box, the other one to add an alternatives chooser (we’ll probably want to run this experiment
only with two intervals, and two alternatives, so in principle we could do without the alternative
chooser, but currently, for technical reasons the hasAlternativesChooser option has to be
added with the “Transformed Up-Down Interleaved”, and the “Weighted Up-Down Interleaved”
paradigms). Besides specifying the default number of intervals and alternatives, we also specify
the default number of interleaved tracks using the defaultNTracks key. Because we have not
added a hasNTracksChooser in the experiment the default number of tracks specified here
will be the default and only possible number of tracks in the experiment.

The select_default_parameters_ function is shown below:

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

97

pychoacoustics Documentation, Release 0.6.12

1 def select_default_parameters_lev_match(parent, par):
2

3 field = []
4 fieldLabel = []
5 chooser = []
6 chooserLabel = []
7 chooserOptions = []
8

9 fieldLabel.append("Starting Level Track 1 (dB SPL)")
10 field.append(75)
11

12 fieldLabel.append("Starting Level Track 2 (dB SPL)")
13 field.append(55)
14

15 fieldLabel.append(parent.tr("Frequency Standard Tone (Hz)"))
16 field.append(1000)
17

18 fieldLabel.append(parent.tr("Frequency Comparison Tone (Hz)"))
19 field.append(250)
20

21 fieldLabel.append(parent.tr("Level Standard Tone (dB SPL)"))
22 field.append(65)
23

24 fieldLabel.append(parent.tr("Duration (ms)"))
25 field.append(180)
26

27 fieldLabel.append(parent.tr("Ramps (ms)"))
28 field.append(10)
29

30 chooserOptions.append(["Right", "Left", "Both"])
31 chooserLabel.append(QApplication.translate("","Ear:",""))
32 chooser.append(QApplication.translate("","Both",""))
33

34

35 prm = {}
36 prm['field'] = field
37 prm['fieldLabel'] = fieldLabel
38 prm['chooser'] = chooser
39 prm['chooserLabel'] = chooserLabel
40 prm['chooserOptions'] = chooserOptions
41

42 return prm

the first two fields will be used to set the starting level of the comparison tone in each track. The
next two fields will be used to set the frequencies of the standard and comparison tone. The next
field will be used to set the level of the standard tone which will be fixed throughout a block of
trials. The last two fields will be used to set the duration of the tone (excluding the ramps), and

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

98

pychoacoustics Documentation, Release 0.6.12

the duration of its onset and offset ramps. The only chooser will be used to set the ear to which
the tones will be presented.

The doTrial_ function for the level matching experiment is shown below:

1 def doTrial_lev_match(parent):
2 currBlock = 'b'+ str(parent.prm['currentBlock'])
3 if parent.prm['startOfBlock'] == True:
4 parent.prm['adaptiveParam'] = []
5 parent.prm['adaptiveParam'].append(parent.prm[currBlock]['field

→˓'][parent.prm['fieldLabel'].index("Starting Level Track 1 (dB SPL)
→˓")])

6 parent.prm['adaptiveParam'].append(parent.prm[currBlock]['field
→˓'][parent.prm['fieldLabel'].index("Starting Level Track 2 (dB SPL)
→˓")])

7 parent.writeResultsHeader('log')
8

9

10

11 standardFrequency = parent.prm[currBlock]['field'][parent.prm[
→˓'fieldLabel'].index("Frequency Standard Tone (Hz)")]

12 comparisonFrequency = parent.prm[currBlock]['field'][parent.prm[
→˓'fieldLabel'].index("Frequency Comparison Tone (Hz)")]

13 standardLevel = parent.prm[currBlock]['field'][parent.prm['fieldLabel
→˓'].index("Level Standard Tone (dB SPL)")]

14 duration = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].
→˓index("Duration (ms)")]

15 ramps = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].
→˓index("Ramps (ms)")]

16 phase = 0
17 channel = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel

→˓'].index("Ear:")]
18

19 comparisonLevel = parent.prm['adaptiveParam'][parent.prm[
→˓'currentDifference']]

20

21 comparisonTone = pureTone(comparisonFrequency, phase,␣
→˓comparisonLevel, duration, ramps,

22 channel, parent.prm['sampRate'], parent.
→˓prm['maxLevel'])

23

24 standardToneList = []
25 for i in range((parent.prm['nIntervals']-1)):
26 thisSnd = pureTone(standardFrequency, phase, standardLevel,␣

→˓duration, ramps, channel,
27 parent.prm['sampRate'], parent.prm['maxLevel'])
28 standardToneList.append(thisSnd)
29 parent.playRandomisedIntervals(comparisonTone, standardToneList)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

99

pychoacoustics Documentation, Release 0.6.12

The adaptive parameter for an experiment with interleaved tracks is not a single number, but a
list containing the values of the adaptive parameter for each track. Therefore, on line 4 we create
the list, and on lines 5 and 6 we populate this list with the initial values of each of the adaptive
tracks.

From lines 11 to 17 we retrieve the values of all the fields and choosers. Nothing new here.
On line 19 we retrieve the value of the adaptive parameter (which in this case is the level of
the comparison tone) for the current trial. To do this, we refer to a key in the parent.prm
dictionary called currentDifference. This key holds the index of the track which has been
randomly selected by pychoacoustics for the current trial.

From line 21 to 28 we prepare the stimuli to be presented in the standard and comparison inter-
vals. We then pass these stimuli as arguments to the playRandomisedIntervals functions.
This experiment is ready to be run.

The up-down rules of the two adaptive tracks need to be set up appropriately to run the matching
experiment. Let’s, take as an example the experiment described in [Jesteadt1980] in which we
wish to determine the intensity of a 250-Hz tone required to match the loudness of a 1000-Hz
tone presented at 40 dB SPL. In the pychoacoustics control window, after having selected
the Demo Level Matching experiment, we set the frequency of the standard tone to 1000 Hz,
and the frequency of the comparison tone to 250 Hz. We also set the level of the standard tone
to 40 dB SPL. We then set the upper, and lower tracks to 60 and 30 dB SPL, two values that
should bracket the point of subjective equality.

The task for the listener is an objective one: s/he will have to tell on each trial which tone was
louder. For track 1, we set the rule down to 2, and the rule up to 1. For track 2 instead, we set the
rule down to 1, and the rule up to 2. In this way, track 1 will target the point in the psychometric
function at which the listener judges the comparison tone to be louder than the standard 70.7%
of the time. Track 2 will target instead the point in the psychometric function at which the
listener judges the comparison tone to be louder than the standard 29.3% of the time. For track
1, when the listener chooses the comparison interval twice in a row the level of the 250-Hz tone
(the comparison tone) is decreased, while each time s/he chooses the standard interval the level
of the 250-Hz tone is increased. For track 2, when the listener chooses the standard interval
twice in a row the level of the 250-Hz tone is increased, while each time the listener chooses
the level of the 250-Hz tone is decreased. For both tracks “correct” responses move the track
down. There are no correct or incorrect responses in a subjective task like this. The Corr.
Resp. Move Track X (down or up) choosers are not named appropriately for this task. They
should be named something like “when the comparison interval is chosen track X moves” down
or up. However, since the underlying code for adaptive interleaved paradigms is the same for
objective and subjective tasks, for simplicity and ease of maintenance of the underlying code
they are called Corr. Resp. Move Track X (down or up). .

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted
Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives
Paradigms

100

pychoacoustics Documentation, Release 0.6.12

9.4 Writing a “Constant 1-Pair Same/Different”
Paradigm Experiment

Todo: Describe of to write experiments for the “Constant 1-Pair Same/Different” paradigm.

9.5 Writing an “Odd One Out” Paradigm Experiment

Todo: Describe of to write experiments for the “Odd One Out” paradigm.

9.6 The Experiment “opts”

• ``hasAlternativesChooser`` This option adds two chooser widgets, one to dynamically
change the number of observation intervals (labelled “Intervals”), and one to dinami-
cally change the number of response alternatives (labelled “Alternatives). This option is
generally used in adaptive paradigms (“Transformed Up-Down”, “Weighted Up-Down”,
as well as their interleaved versions). The number of response alternatives that can be
choosen from the widget can be either equal to the number of observation intervals, or to
the number of observation intervals minus one. In the latter case the standard stimulus is
presented in the first interval, as a reference, with no corresponding response alternative,
see [GrimaultEtAl2002] for an example of this 𝑛-intervals, 𝑛−1 alternatives presentation
mode. The selected number of intervals and alternatives can be accessed in the experiment
file through the parent.prm['nIntervals'], and parent.prm['nAlternatives']
variables respectively.

• ``hasAltReps`` This option can be used to change the way in which the stimuli are pre-
sented in the “Transformed Up-Down” paradigm or other adaptive paradigms. In these
paradigms, normally there is an observation interval containing the target stimulus (com-
parison interval), and one or more other intervals containing the non-target stimuli (stan-
dard intervals). An alternative way to present the stimuli is to have an alternation of
the target and non-target stimuli (e.g. ABAB) in the comparison interval, and a repe-
tition of the non-target stimulus in the standard interval (AAAA) [KingEtAl2013]. If
the hasAltReps option is enabled, there will be two additional text boxes, Alternated
(AB) Reps. and Alternated (AB) Reps. ISI (ms). The first text box controls the
number of times the alternated target and non-target stimuli should be repeated, a value of
zero corresponds to no alternation, that is only a single stimulus (either the target, or the
non target) is presented in each interval. If the value is one, a single alternation will occur
(AB), if the value is two, two alternations occur (ABAB), and so on. The second text box
controls the ISI between the stimuli presented within an interval. The selected number of
alternated repetitions, and the ISI between alternating stimuli can be accessed in the exper-
iment file through the parent.prm['altReps'], and parent.prm['altRepsISI']

9.4. Writing a “Constant 1-Pair Same/Different” Paradigm Experiment 101

pychoacoustics Documentation, Release 0.6.12

variables respectively. The setup of the alternated repetitions must be done within each
experiment file.

• ``hasFeedback`` This option controls whether the “Response Light” chooser has a “Feed-
back” option or not. You may want to enable this option for all “objective” experiments
that have a clear “correct” response. You may want to disable this option for “subjective”
experiments, such as matching experiments, in which there is no “correct” response.

• ``hasISIBox`` If this option is enabled, a box labelled ISI (ms) is added. This is gener-
ally used to set the silent period between observation intervals in the “Transformed Up-
Down” and similar adaptive procedures. Its value can be accessed in the experiment file
through the parent.prm['isi'] variable. However, normally this should not be neces-
sary because the playRandomisedIntervals function automatically uses this value to
set the silent period between observation intervals.

• ``hasNDifferencesChooser`` This option is useful in the “Multiple Constants 1-Interval
2-Alternatives Paradigm” to dinamically change the number of experimental conditions.
For example, if you have a signal detection experiment in which a fixed number of signals
(with a constant amplitude) can occur, this option allows to choose the number of con-
ditions dinamically. If this option is enabled, a chooser labelled No. Alternatives
is added. The value selected can be accessed through the par['nDifferences']
variable in the select_default_parameters_ function, and through the parent.
prm['nDifferences'] variable in the doTrial function.

• ``hasNTracksChooser`` This option can be used to dinamically change the number of
tracks in interleaved adaptive paradigms (e.g. “Transformed Up-Down Interleaved). If
enabled, a No. Tracks chooser is added. The value selected can be accessed through
the par['nDifferences'] variable in the select_default_parameters_ function,
and through the parent.prm['nDifferences'] variable in the doTrial function.

• ``hasPrecursorInterval`` If this option is enabled, a chooser controlling whether a
precursor interval should be presented or not is added. This chooser is labelled
Precursor Interval. If this option is enabled, and the chooser is set to “Yes”, then a
precursorStim sound needs to be passed to the playRandomisedIntervals function.
This sound will be presented before each observation interval.

• ``hasPostcursorInterval`` If this option is enabled, a chooser controlling whether a
postcursor interval should be presented or not is added. This chooser is labelled
Postcursor Interval. If this option is enabled, and the chooser is set to “Yes”, then
a postcursorStim sound needs to be passed to the playRandomisedIntervals func-
tion. This sound will be presented after each observation interval.

• ``hasPreTrialInterval`` If this option is enabled, a chooser controlling whether a pre-
trial interval should be presented or not is added. This chooser is labelled Pre-Trial
Interval. If this option is enabled, and the chooser is set to “Yes”, then a preTrialStim
sound needs to be passed to the playRandomisedIntervals function. This sound will
be presented at the beginning of each trial.

9.6. The Experiment “opts” 102

pychoacoustics Documentation, Release 0.6.12

9.7 The Play Sound Functions

Todo: Illustrate the functions to play sounds

9.8 Simulations

pychoacoustics is not designed to run simulations in itself, however it provides
a hook to redirect the control flow to an auditory model that you need to specify
yourself in the experiment file. You can retrieve the current response mode from
the experiment file with:

1 parent.prm['allBlocks']['responseMode']

so, in the experiment file, after the creation of the stimuli for the trial you can redirect the control
flow of the program depending on the response mode:

1 if parent.prm['allBlocks']['responseMode'] != "Simulated Listener":
2 #we are not in simulation mode, play the stimuli for the listener
3 parent.playSoundSequence(sndSeq, ISIs)
4 if parent.prm['allBlocks']['responseMode'] == "Simulated Listener":
5 #we are in simulation mode
6 #pass the stimuli to an auditory model and decision device
7 #---
8 #Here you specify your model, pychoacoustics doesn't do it for you!
9 # at the end your simulated listener arrives to a response that is

10 # either correct or incorrect
11 #---
12 parent.prm['trialRunning'] = False
13 #this is needed for technical reasons (if the 'trialRunning'
14 #flag were set to 'True' pychoacoustics would not process
15 #the response.
16 #
17 #let's suppose that at the end of the simulation you store the
18 #response in a variable called 'resp', that can take as values
19 #either the string 'Correct' or the string 'Incorrect'.
20 #You can then proceed to let pychoacoustics process the response:
21 #
22 if resp == 'Correct':
23 parent.sortResponse(parent.correctButton)
24 elif resp == 'Incorrect':
25 #list all the possible 'incorrect' buttons
26 inc_buttons = numpy.delete(numpy.arange(
27 self.prm['nAlternatives'])+1,
28 self.correctButton-1))

(continues on next page)

9.7. The Play Sound Functions 103

pychoacoustics Documentation, Release 0.6.12

(continued from previous page)
29 #choose one of the incorrect buttons
30 parent.sortResponse(random.choice(inc_buttons))

9.8. Simulations 104

10
Troubleshooting

10.1 The computer crashed in the middle of an experi-
mental session

pychoacoustics saves the results at the end of each block, therefore only the results from the
last uncompleted block will be lost, the results of completed blocks will not be lost. If you
have an experiment with many different blocks presented in random order it may be difficult to
see which blocks the listener had already completed and set pychoacoustics to run only the
blocks that were not run. To address this issue pychoacoustics keeps a copy of the parameters,
including the block presentation order after shuffling, in a file called .tmp_prm.prm (this is a
hidden file on Linux systems). Therefore, after the crash you can simply load this parameters
file and move to the block position that the listener was running when the computer crashed to
resume the experiment.

A second function of the .tmp_prm.prm file is to keep a copy of parameters that were stored in
memory, but not saved to a file. If your computer crashed while you were setting up a parameters
for an experiment that were not yet saved (or were only partially saved) to a file, you can retrieve
them after the crash by loading the .tmp_prm.prm file. One important thing to keep in mind is
that the .tmp_prm.prm will be overwritten as soon as new parameters are stored in memory by
a pychoacoustics instance opened in the same directory. Therefore it is advisable to make a
copy of the .tmp_prm.prm file renaming it to avoid accidentally loosing its contents after the
crash.

105

11
sndlib – Sound Synthesis Library

106

12
pysdt – Signal Detection Theory Measures

107

13
GNU Free Documentation License

Version 1.2, November 2002

Copyright ©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

108

pychoacoustics Documentation, Release 0.6.12

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical con-
nection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include pro-
prietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknowl-
edgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of
such a section when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by

109

pychoacoustics Documentation, Release 0.6.12

reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take rea-
sonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before re-
distributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

110

pychoacoustics Documentation, Release 0.6.12

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

• For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

• Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option

111

pychoacoustics Documentation, Release 0.6.12

designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”

112

pychoacoustics Documentation, Release 0.6.12

if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document speci-
fies that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or

113

http://www.gnu.org/copyleft/

pychoacoustics Documentation, Release 0.6.12

modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

114

14
Indices and tables

• genindex

• modindex

• search

115

Bibliography

[GrimaultEtAl2002] Grimault, N., Micheyl, C., Carlyon, R. P., & Collet, L. (2002). Evidence
for two pitch encoding mechanisms using a selective auditory training paradigm.
Percept. Psychophys., 64(2), 189–197.

[Jesteadt1980] Jesteadt,W. (1980). An adaptive procedure for subjective judgments. Percept
Psychophys, 28(1), 85–88.

[Kaernbach1991] Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down
method. Percept Psychophys, 49(3), 227–229.

[KingEtAl2013] King, A., Hopkins, K., & Plack, C. J. (2013). Differences in short-term train-
ing for interaural phase difference discrimination between two different forced-
choice paradigms. J. Acoust. Soc. Am., 134(4), 2635. doi:10.1121/1.4819116

[Levitt1971] Levitt, H. (1971). Transformed up-down methods in psychoacoustics. J. Acoust.
Soc. Am., 49(2), 467-477.

[MacmillanAndCreelman2005] Macmillan, N. A., & Creelman, C. D. (2005). Detection the-
ory: A user’s guide (2dn ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

[Prins2013] Prins, N. (2013). The psi-marginal adaptive method: How to give nuisance pa-
rameters the attention they deserve (no more, no less). Journal of Vision, 13, 1–17.
doi:10.1167/13.7.3

[ShenAndRichards2012] Shen, Y., & Richards, V. (2012). A maximum-likelihood procedure
for estimating psychometric functions: Thresholds, slopes, and lapses of attention.
J. Acoust. Soc. Am., 132, 957–967. doi:10.1121/1.4733540

[TaylorAndCreelman1967] Taylor, M., & Creelman, C. (1967). PEST: Efficient esti-
mates on probability functions. J. Acoust. Soc. Am., 41(4A), 782-787.
doi:10.1121/1.1910407

[VersfeldEtAl1996] Versfeld, N. J., Dai, H., & Green, D. M. (1996). The optimum decision
rules for the oddity task. Percept. Psychophys., 58(1), 10–21.

116

	What is pychoacoustics?
	Installation
	Graphical User Interface
	Quickstart
	The Control Window
	General Widgets (left panel)
	Additional Widgets (left panel)
	General Widgets (right panel)
	Paradigm Widgets
	1-Pair Same/Different Paradigm Widgets
	Constant 1-Interval 2-Alternatives Paradigm Widgets
	Constant m-Intervals n-Alternatives Paradigm Widgets
	Multiple Constants ABX Paradigm Widgets
	Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets
	Multiple Constants m-Intervals n-Alternatives Paradigm Widgets
	Odd One Out Paradigm Widgets
	PEST Paradigm Widgets
	PSI Paradigm Widgets
	Transformed Up-Down Paradigm Widgets
	Transformed Up-Down Interleaved Paradigm Widgets
	UML Paradigm Widgets
	Weighted Up-Down Paradigm Widgets
	Weighted Up-Down Interleaved Paradigm Widgets
	The Menu Bar
	The File Menu
	The Edit Menu
	The Tools Menu
	The Help Menu
	The “what’s this?” Button.

	Process Results Dialog
	Edit Preferences Dialog
	General
	Sound
	Response Box
	Notifications
	EEG

	Edit Phones Dialog
	Calibrating with an SPL meter
	Calibrating with a voltmeter

	Edit Experimenters Dialog
	The Response Box

	Command Line User Interface
	Paradigms
	Available Paradigms
	Transformed Up-Down
	Transformed Up-Down Interleaved
	Weighted Up-Down
	Weighted Up-Down Interleaved
	Constant m-Intervals n-Alternatives
	Constant 1-Interval 2-Alternatives
	Constant 1-Pair Same/Different
	Multiple Constants 1-Pair Same/Different
	Multiple Constants ABX
	Odd One Out
	PEST
	PSI
	UML

	Result Files
	Tabular Results Files
	Plain-Text Result Files
	Result Files by Paradigm
	Transformed Up-Down and Weighted Up-Down
	Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Tabular Session-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-Down)

	Transformed Up-Down and Weighted Up-Down Interleaved Result Files
	Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Tabular Session-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-Down Interleaved)

	UML and PSI Result Files
	Tabular Block-Summary Result Files (UML and PSI)
	Tabular Trial-Summary Result Files (UML and PSI)
	Tabular Session-Summary Result Files (UML and PSI)
	Plain-Text Block-Summary Result Files (UML and PSI)
	Plain-Text Trial-Summary Result Files (UML and PSI)
	Plain-Text Session-Summary Result Files (UML and PSI)

	PEST Result Files
	Tabular Block-Summary Result Files (PEST)
	Tabular Trial-Summary Result Files (PEST)
	Tabular Session-Summary Result Files (PEST)
	Plain-Text Block-Summary Result Files (PEST)
	Plain-Text Trial-Summary Result Files (PEST)
	Plain-Text Session-Summary Files (PEST)

	Constant m-Intervals n-Alternatives Result Files
	Tabular Block-Summary Result Files (Constant m-Intervals n-Alternatives)
	Tabular Trial-Summary Result Files (Constant m-Intervals n-Alternatives)
	Tabular Session-Summary Result Files (Constant m-Intervals n-Alternatives)
	Plain-Text Block-Summary Result Files (Constant m-Intervals n-Alternatives)
	Plain-Text Trial-Summary Result Files (Constant m-Intervals n-Alternatives)
	Plain-Text Session-Summary Files (Constant m-Intervals n-Alternatives)

	Multiple Constants m-Intervals n-Alternatives Result Files
	Tabular Block-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Tabular Trial-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Tabular Session-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Plain-Text Block-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Plain-Text Trial-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Plain-Text Session-Summary Files (Multiple Constants m-Intervals n-Alternatives)

	Constant 1-Intervals 2-Alternatives Result Files
	Tabular Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Tabular Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Tabular Session-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Plain-Text Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Plain-Text Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Plain-Text Session-Summary Files (Constant 1-Intervals 2-Alternatives)

	Multiple Constants 1-Intervals 2-Alternatives Result Files
	Tabular Block-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Tabular Trial-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Tabular Session-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Plain-Text Block-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Plain-Text Trial-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Plain-Text Session-Summary Files (Multiple Constants 1-Intervals 2-Alternatives)

	Constant 1-Pair Same/Different Result Files
	Tabular Block-Summary Result Files (Constant 1-Pair Same/Different)
	Tabular Session-Summary Result Files (Constant 1-Pair Same/Different)
	Plain-Text Block-Summary Result Files (Constant 1-Pair Same/Different)
	Plain-Text Trial-Summary Result Files (Constant 1-Pair Same/Different)
	Plain-Text Session-Summary Files (Constant 1-Pair Same/Different)

	Multiple Constants 1-Pair Same-Different Result Files
	Tabular Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Tabular Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Tabular Session-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Plain-Text Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Plain-Text Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Plain-Text Session-Summary Files (Multiple Constants 1-Pair Same-Different)

	Multiple Constants ABX Result Files
	Tabular Block-Summary Result Files (Multiple Constants ABX)
	Tabular Trial-Summary Result Files (Multiple Constants ABX)
	Tabular Session-Summary Result Files (Multiple Constants ABX)
	Plain-Text Block-Summary Result Files (Multiple Constants ABX)
	Plain-Text Trial-Summary Result Files (Multiple Constants ABX)
	Plain-Text Session-Summary Files (Multiple Constants ABX)

	Multiple Constants Odd One Out Result Files
	Tabular Block-Summary Result Files (Multiple Constants Odd One Out)
	Tabular Trial-Summary Result Files (Multiple Constants Odd One Out)
	Tabular Session-Summary Result Files (Multiple Constants Odd One Out)
	Plain-Text Block-Summary Result Files (Multiple Constants Odd One Out)
	Plain-Text Trial-Summary Result Files (Multiple Constants Odd One Out)
	Plain-Text Session-Summary Files (Multiple Constants Odd One Out)

	Multiple Constants Sound Comparison Result Files
	Tabular Block-Summary Result Files (Multiple Constants Sound Comparison)
	Tabular Trial-Summary Result Files (Multiple Constants Sound Comparison)
	Tabular Session-Summary Result Files (Multiple Constants Sound Comparison)
	Plain-Text Block-Summary Result Files (Multiple Constants Sound Comparison)
	Plain-Text Trial-Summary Result Files (Multiple Constants Sound Comparison)
	Plain-Text Session-Summary Files (Multiple Constants Sound Comparison)

	Log Results Files

	Default Experiments
	Audiogram
	Demo Audiogram Multiple Frequencies
	Demo Frequency Discrimination
	Demo Signal Detection
	Dummy Adaptive
	F0DL
	Level Discrimination
	WAV ABX
	WAV Comparison
	WAV Same/Different

	The pychoacoustics Engine
	Sound Output
	Sound Output on Linux
	Sound Output on Windows
	Sound Output on macOS
	Sound Output on FreeBSD

	Parameters Files
	Block Presentation Position
	Displaying Task Instructions
	OS Commands
	Preferences Settings
	Response Mode

	Writing your own Experiments
	First Steps
	Anatomy of a pychoacoustics experiment file
	The initialize_ function
	The select_default_parameters_ function
	The doTrial_ function
	Adding support for the Constant Paradigm
	Showing/Hiding Widgets Dynamically

	Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment
	Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms
	Writing a matching experiment using interleaved adaptive tracks

	Writing a “Constant 1-Pair Same/Different” Paradigm Experiment
	Writing an “Odd One Out” Paradigm Experiment
	The Experiment “opts”
	The Play Sound Functions
	Simulations

	Troubleshooting
	The computer crashed in the middle of an experimental session

	sndlib – Sound Synthesis Library
	pysdt – Signal Detection Theory Measures
	GNU Free Documentation License
	Indices and tables
	Bibliography

