
pychoacoustics Documentation
Release 0.6.8

Samuele Carcagno

Feb 05, 2024

CONTENTS

1 What is pychoacoustics? 3

2 Installation 7

3 Graphical User Interface 9
3.1 Quickstart . 9
3.2 The Control Window . 9

3.2.1 General Widgets (left panel) . 10
3.2.2 Additional Widgets (left panel) . 13
3.2.3 General Widgets (right panel) . 13
3.2.4 Paradigm Widgets . 14
3.2.5 1-Pair Same/Different Paradigm Widgets . 14
3.2.6 Constant 1-Interval 2-Alternatives Paradigm Widgets 14
3.2.7 Constant m-Intervals n-Alternatives Paradigm Widgets 15
3.2.8 Multiple Constants ABX Paradigm Widgets . 15
3.2.9 Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets 15
3.2.10 Multiple Constants m-Intervals n-Alternatives Paradigm Widgets 15
3.2.11 Odd One Out Paradigm Widgets . 15
3.2.12 PEST Paradigm Widgets . 16
3.2.13 PSI Paradigm Widgets . 16
3.2.14 Transformed Up-Down Paradigm Widgets . 16
3.2.15 Transformed Up-Down Interleaved Paradigm Widgets 17
3.2.16 UML Paradigm Widgets . 18
3.2.17 Weighted Up-Down Paradigm Widgets . 19
3.2.18 Weighted Up-Down Interleaved Paradigm Widgets 20
3.2.19 The Menu Bar . 21
3.2.20 The File Menu . 21
3.2.21 The Edit Menu . 21
3.2.22 The Tools Menu . 22
3.2.23 The Help Menu . 22
3.2.24 The “what’s this?” Button. 22

3.3 Process Results Dialog . 22
3.4 Edit Preferences Dialog . 23

3.4.1 General . 23
3.4.2 Sound . 24

i

3.4.3 Response Box . 25
3.4.4 Notifications . 25
3.4.5 EEG . 26

3.5 Edit Phones Dialog . 26
3.5.1 Calibrating with an SPL meter . 27
3.5.2 Calibrating with a voltmeter . 27

3.6 Edit Experimenters Dialog . 28
3.7 The Response Box . 28

4 Command Line User Interface 31

5 Paradigms 33
5.1 Available Paradigms . 33

5.1.1 Transformed Up-Down . 33
5.1.2 Transformed Up-Down Interleaved . 33
5.1.3 Weighted Up-Down . 33
5.1.4 Weighted Up-Down Interleaved . 34
5.1.5 Constant m-Intervals n-Alternatives . 34
5.1.6 Constant 1-Interval 2-Alternatives . 34
5.1.7 Constant 1-Pair Same/Different . 34
5.1.8 Multiple Constants 1-Pair Same/Different . 34
5.1.9 Multiple Constants ABX . 34
5.1.10 Odd One Out . 34
5.1.11 PEST . 35
5.1.12 PSI . 35
5.1.13 UML . 35

6 Result Files 37
6.1 Tabular Results Files . 38
6.2 Plain-Text Result Files . 40
6.3 Result Files by Paradigm . 42

6.3.1 Transformed Up-Down and Weighted Up-Down 42
6.3.2 Transformed Up-Down and Weighted Up-Down Interleaved Result Files 44
6.3.3 UML and PSI Result Files . 47
6.3.4 PEST Result Files . 48
6.3.5 Constant m-Intervals n-Alternatives Result Files 50
6.3.6 Multiple Constants m-Intervals n-Alternatives Result Files 51
6.3.7 Constant 1-Intervals 2-Alternatives Result Files 54
6.3.8 Multiple Constants 1-Intervals 2-Alternatives Result Files 56
6.3.9 Constant 1-Pair Same/Different Result Files . 60
6.3.10 Multiple Constants 1-Pair Same-Different Result Files 63
6.3.11 Multiple Constants ABX Result Files . 65
6.3.12 Multiple Constants Odd One Out Result Files . 67
6.3.13 Multiple Constants Sound Comparison Result Files 69

6.4 Log Results Files . 71

7 Default Experiments 73
7.1 Audiogram . 73

ii

7.2 Demo Audiogram Multiple Frequencies . 73
7.3 Demo Frequency Discrimination . 73
7.4 Demo Signal Detection . 73
7.5 Dummy Adaptive . 73
7.6 F0DL . 73
7.7 Level Discrimination . 73
7.8 WAV ABX . 73
7.9 WAV Comparison . 73
7.10 WAV Same/Different . 73

8 The pychoacoustics Engine 75
8.1 Sound Output . 75

8.1.1 Sound Output on Linux . 75
8.1.2 Sound Output on Windows . 75
8.1.3 Sound Output on macOS . 76
8.1.4 Sound Output on FreeBSD . 76

8.2 Parameters Files . 76
8.3 Block Presentation Position . 77
8.4 Displaying Task Instructions . 78
8.5 OS Commands . 79
8.6 Preferences Settings . 80
8.7 Response Mode . 80

9 Writing your own Experiments 83
9.1 First Steps . 83

9.1.1 Anatomy of a pychoacoustics experiment file 84
9.2 Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment 93
9.3 Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down In-

terleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms 95
9.3.1 Writing a matching experiment using interleaved adaptive tracks 100

9.4 Writing a “Constant 1-Pair Same/Different” Paradigm Experiment 104
9.5 Writing an “Odd One Out” Paradigm Experiment . 104
9.6 The Experiment “opts” . 104
9.7 The Play Sound Functions . 106
9.8 Simulations . 106

10 Troubleshooting 109
10.1 The computer crashed in the middle of an experimental session 109

11 sndlib – Sound Synthesis Library 111

12 pysdt – Signal Detection Theory Measures 113

13 References 115

14 GNU Free Documentation License 117

15 Indices and tables 123

iii

Bibliography 125

iv

pychoacoustics Documentation, Release 0.6.8

Author
Samuele Carcagno <sam.carcagno@gmail.com>

pychoacoustics version 0.6.8, last updated Feb 05, 2024

Copyright ©2012–2023 Samuele Carcagno <sam.carcagno@gmail.com>. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Disclaimer: This document comes with NO WARRANTY whatsoever of being correct in any of its parts.
This document is work in progress.

Contents:

CONTENTS 1

mailto:sam.carcagno@gmail.com
mailto:sam.carcagno@gmail.com

pychoacoustics Documentation, Release 0.6.8

2 CONTENTS

CHAPTER

ONE

WHAT IS PYCHOACOUSTICS?

pychoacoustics is a software for programming and running experiments in auditory psychophysics (psy-
choacoustics). The software contains a set of predefined experiments that can be immediately run after
installation. Importantly, pychoacoustics is designed to be extensible so that users can add new custom ex-
periments with relative ease. Custom experiments are written in Python, a programming language renowned
for its clarity and ease of use. The application is divided in two graphical windows a) the “response box”,
shown in Figure The pychoacoustics response box, with which listeners interact during the experiment, and
b) the control window, shown in Figure The pychoacoustics control window, that contains a series of widgets
(choosers, text fields and buttons) that are used by the experimenter to set all of the relevant experimental
parameters which can also be stored and later reloaded into the application.

Fig. 1: The pychoacoustics response box

Some of the main features of pychoacoustics are that:

• pychoacoustics lets you create complex auditory experiments with relative ease

• experimental variables can be easily manipulated, stored, and retrieved using a graphical user interface

• pychoacoustics takes care of stimulus presentation, including setting up interval lights and response
buttons

3

pychoacoustics Documentation, Release 0.6.8

Fig. 2: The pychoacoustics control window

• pychoacoustics takes care of collecting responses, computing summary measures such as threshold
estimates, and d’, and storing them as CSV files so that they can be readily visualized and processed
using statistics programs (R, SPSS, etc. . .), or spreadsheet applications (Excel, Libreoffice Calc, etc. . .)

• pychoacoustics supports the most commonly used stimulus presentation procedures, such as the trans-
formed up-down, same-different, and ABX procedures. It also supports less known and cutting-edge
procedures such as the updated maximum likelihood (UML) and the PSI+ and PSI-marginal proce-
dures

• for many procedures pychoacoustics can provide graphical summaries of the results

• pychoacoustics stores all important information, including names and values of experimental parame-
ters, timestamps, participant identification codes (if provided), version of the software used to run the
experiment, etc. . . , so that no important information is accidentally lost

• pychoacoustics allows you to present standardized written instructions to participants at the beginning
of the experiment, or at the beginning of specific blocks of trials. Participants can also get an idea of
how much of an experiment they have completed through optional progress bars.

• pychoacoustics includes sndlib.py, a library that lets you easily generate experimental stimuli com-
monly used in psychoacoustics experiments (pure tones, complex tones, noise, etc. . .)

I started writing pychoacoustics for fun and for the sake of learning around 2008 while doing my PhD
under the supervision of Professor Chris Plack at Lancaster University. At that time we were using in the
lab a MATLAB program called the “Earlab” written by Professor Plack. pychoacoustics has been greatly
influenced and inspired by the “Earlab”. For this reason, as well as for the time he dedicated to teach me

4 Chapter 1. What is pychoacoustics?

pychoacoustics Documentation, Release 0.6.8

audio programming, I am greatly indebted to Professor Plack.

5

pychoacoustics Documentation, Release 0.6.8

6 Chapter 1. What is pychoacoustics?

CHAPTER

TWO

INSTALLATION

pychoacoustics is written in Python and requires the installation of a Python interpreter. Once the Python
interpreter has been installed, pychoacoustics can be installed via pip:

pip install pychoacoustics

once pychoacoustics is installed you can launch it from a bash/DOS terminal with the command

pychoacoustics

Note that the program needs to be launched in the same Python environment in which it has been installed.
The program has been tested on Linux and Windows. It should work also on Mac computers but this has
not been tested. Depending on your Python distribution you may want to install the python modules pychoa-
coustics depends on before installing pychoacoustics (e.g. via the conda package manager if you’re using the
Anaconda Python distribution). The dependencies are:

• PyQt5

• numpy

• scipy

• pandas

• matplotlib

• PyAudio

if you’re using Linux you can also install pyalsaaudio to have an additional sound output option. If you’re
using conda on Windows I’d recommend installing PyAudio via pip because the PyAudio version available
on conda is not built with support for the WASAPI output interface (at least that was the case the last time I
checked).

7

pychoacoustics Documentation, Release 0.6.8

8 Chapter 2. Installation

CHAPTER

THREE

GRAPHICAL USER INTERFACE

The user interface is divided into two windows: the “Control Window” and the “Response Box”. The “Con-
trol Window” is used to set the experimental parameters, while the “Response Box” is the interface with
which listeners interact.

3.1 Quickstart

When pychoacoustics is launched, the “Control Window” displays the default parameters for the “Audio-
gram” experiment. You can select another experiment using the “Experiment” drop-down menu, and edit
any of the parameter fields you want to modify. Once you’re satisfied with the parameters, you can store
them by pressing the “Store” button. This stores one experimental block with the chosen parameters. At this
point you can either start running the experiment by pressing the “Start” button on the “Response Box”, or
you can add more experimental blocks by clicking on the “New Block” button.

To save the parameters to a file click on the “Save Prm” button. Parameter files that have been saved in this
way can be later loaded into the program by using the “Load Prm” button.

To save the results of your experiment to a file, click on the “Save Results” button. If you have forgotten
to specify a results file in this way, pychoacoustics will save the results in a file called test.txt in the
working directory.

3.2 The Control Window

The control window contains a set of widgets to manage the setup of the experiments, running the experi-
ments, processing results files and managing application preferences. Some of the widgets are general, and
some of them are specific either to a given paradigm (e.g. adaptive vs constant stimuli paradigm) or to a given
experiment.

In the next section the function of these widgets will be explained, starting with the widgets that are general
to all experiments and paradigms.

9

pychoacoustics Documentation, Release 0.6.8

3.2.1 General Widgets (left panel)

• Listener This is simply a label that you can use to identify the listener who is being tested. This label
will be written in the header of the results file.

• Experiment Label. This is a label to identify the experiment you are running. This label will be
written in the header of the results file.

• Session This is a label to identify the experimental session, it can be a number or a string. This label
will be written in the header of the results file.

• Condition Label This is a label to identify the experimental condition of the current block of trials.
It is optional, but it may be useful when sorting the experimental results (see Tabular Results Files).

• Task Label This label will be shown in the response box to tell the listener which task s/he’s doing.
Useful in case different tasks are mixed within a session.

• Instructions This box allows to give task instructions to the listener. If the block of trials occurs at
a block position in which task instructions are set to be shown (see “Show Instructions At BP” field
below), the text written in this box will will be shown to listeners at the beginning of the block of trials
(see Displaying Task Instructions for more info).

• Show Instructions At BP Indicate the block positions (see Block Presentation Position for a definition
of block positions) at which the instructions should be shown to the listener. The block positions have
to be indicated by a list of numbers separated by commas (see Displaying Task Instructions for more
info).

• End Command Here you can write an operating system command (e.g. a bash command on Unix
systems or a DOS command on Windows systems) to be performed at the end of the experimental
session. This could be used to run a custom script to analyse the result files, make a backup of the
results files or other purposes. There are some variables (such as the name of the results file) that can
be accessed with a special string. These are listed in Section OS Commands Table pychoacoustics
variables Please refer to that section for further info on how to use them.

• Shuffling Scheme By default when you click the “Shuffle” button, pychoacoustics randomly shuf-
fles all blocks, here you can specify different shuffling schemes (e.g. shuffle the first four blocks among
themselves and the last four blocks among themselves). Please refer to Section Block Presentation Po-
sition for more details.

• Proc. Res. Process the “block summary” file at the end of the experimental session in order to obtain
a “session summary” file (see Result Files).

• Proc. Res. Table Process the “table block summary” file at the end of the experimental session in
order to obtain a “table session summary” file (see Result Files).

• Plot Plot the results at the end of the experimental session. This function is available only if both
matplotlib and pandas are installed. Plots are available only for some experimental paradigms.

• PDF Plot Create a PDF file plotting the results at the end of the experimental session. This func-
tion is available only if both matplotlib and pandas are installed. Plots are available only for some
experimental paradigms.

• Experimenter Here you can select one of the experimenters listed in the experimenter database. Please
refer to Section Edit Experimenters Dialog for further info on the experimenter database and how it

10 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

can be used.

• Experiment Selects the experiment for the current block.

• Paradigm Selects the paradigm (e.g. transformed up-down, constant, etc. . .) for the current block.
The list of paradigms available depends on the experiment that is selected.

• Phones Choose from one of the phone models stored in the phones database. Please, refer to Section
Edit Phones Dialog for further info on how to enter phones and calibration values in the database.

• Sample Rate (Hz) Set the sampling rate of the sounds to be played. Any value can be entered in the
text fields. However, you should enter a value that is supported by your soundcard. A value that is
not supported by your souncard may lead to issues, although it’s more likely that your computer will
perform an automatic sample rate conversion to a supported sample rate.

• Bits Set the bit depth that pychoacoustics uses to store sounds to a wav file or play them. Currently
values of 16 and 32 bits are supported. A value of 32 bits can be used for 24-bit soundcards. Notice
that achieving 24-bit output requires both a 24-bit souncard and a play command that can output 24-bit
sounds. Therefore selecting a value of 32 bits here does not guarantee 24-bit playback even if you have
a 24-bit souncard. Please, refere to Section Sound Output for further information on this issue.

• No. Repetitions Set the number of times the sequence of blocks stored in memory should be repeated.
If the “Shuffle Mode” (see below) is set to “auto”, each time a new repetition starts the block positions
will be shuffled. If the “Shuffle Mode” is set to “Ask”, each time a new repetition starts the user will be
asked if s/he wants to shuffle the block positions. The “Reset” button resets the number of repetitions
completed by the listener to zero.

• Pre-Trial Silence (ms) Set a silent time interval before the start of each trial. Useful to avoid that a
new trial starts immediately after the listener has given his/her response.

• Warning Interval Choose whether to present a warning light at the beginning of each trial.

• Warning Interval Duration (ms) Sets the duration of the warning interval light. This widget is shown
only if the warning interval chooser is set to “Yes”.

• Warning Interval ISI (ms) Sets the duration of the silent interval between the end of warning interval
and the start of the first observation interval. This widget is shown only if the warning interval chooser
is set to “Yes”.

• Response Light Set the kind of feedback to give to participants at the end of each trial. “Feedback”
will give feedback (e.g. flash a green, for a correct response, or red, for an incorrect response light.
“Neutral” will acknowledge that a responses has been given, but will not give feedback as to whether the
response was correct (e.g. flash a white light). “None” will not give any feedback or acknowledgment
that a response has been given. (e.g. no light will be flashed, there will nonetheless be a silent interval
equal to the response light duration, see below).

• Response Light Type Determines the mode in which feedback or acknoledgment of listener responses
is given. If “Light”, a colored light will be flashed (e.g. a green light to indicate a correct response, and
a red light to indicate an incorrect response). If “Text”, a string will be presented (e.g. “Correct!” for
a correct response, and “Incorrect!” for an incorrect response. If “Smiley”, a smiley will be painted
in the response light box. Combinations of these three basic feedback presentation modes are also
possible.

• Response Light Duration (ms) Set the duration of the response light.

3.2. The Control Window 11

pychoacoustics Documentation, Release 0.6.8

• Results File Select a file for saving the results. Selecting an existing file will never overwrite its content,
it will simply append the new results to its content. If no file is selected, the results will be saved in
a file called test.txt in the current working directory. You can select a file to save the results even
after you have started a block of trials, the results get written to the file only at the end of the block.

• Shuffle Mode If the “Shuffle Mode” is “auto”, the block presentation positions will be automatically
shuffled at the beginning of a series of blocks. If the “Shuffle Mode” is “Ask”, at the beginning of a
series of blocks the user will be asked if the block presentation positions should be shuffled or not. If
the “Shuffle Mode” is “No”, the block presentation positions will not be automatically shuffled at the
beginning of a series of blocks. See Section Block Presentation Position for further information on
shuffling the block presentation positions.

• Response Mode When “Real Listener” is selected, pychoacoustics waits for responses from a hu-
man listener. When “Automatic” is selected the program will give responses by itself with a certain
percentage correct, that can be specified in the “Percent Correct (%)” text field. This mode is mostly
useful for debugging purposes, however it can also be used for experiments in which the participants are
passively listening to the stimuli (e.g. some neuroimaging experiments that record cerebral responses
rather than behavioural responses). In “Simulated Listener” mode pychoacoustics will give re-
sponses on the bases of an auditory model. This model needs to be specified in the experiment file,
the “Simulated Listener” mode provides just a hook to redirect the control flow to your model. When
the “Psychometric” listener mode is selected responses are given automatically according to the shape
of a psychometric function (see boxes below for specifying the psychometric function shape). The
“Psychometric” listener mode works only for adaptive paradigms (e.g. tranformed up-down, weighted
up-down, PEST, UML, PSI). Please, refer to Section Response Mode for more information.

• Psychometric Listener Function The function family for the psychometric listener. Currently sup-
ported functions are “Logistic”, “Gaussian” (normal), “Gumbel”, and “Weibull”.

• Psychometric Listener Function Fit Whether the psychometric function is fitted on “Linear” or “Log-
arithmic” coordinates. With the transformed up-down, PEST, and weighted up-down paradigms you
should choose “Logarithmic” if you’re using a geometric adaptive procedure. With the PSI and UML
paradigms you should choose “Logarithmic” if your the stimulus scaling is set to “Logarithmic”.

• Psychometric Listener Midpoint The midpoint of the psychometric function, that is the middle point
between chance performance and maximum performance. For a two-alternative forced choice task this
will correspond to the point at which the listener achieves a 75% correct performance.

• Psychometric Listener Slope The slope of the psychometric function. Please note that slopes mea-
sured with different psychometric function families (e.g. “Logistic” and “Gaussian”) are not directly
comparable.

• Psychometric Listener Lapse The lapse rate of the psychometric listener.

• Save psychometric listener data Save the psychometric listener data to a text file. The first column of
the saved file corresponds to the probability of a correct response. The second column corresponds to
the stimulus value at which the psychometric listener achieves that probability of a correct response.

• Plot psychometric listener function Plot the psychometric function defined for the psychometric
listener.

12 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

3.2.2 Additional Widgets (left panel)

The following widgets are present only in some experiments:

• ISI (ms) Inter-stimulus silent interval, in ms.

• Intervals Set the number of observation intervals.

• Alternatives Set the number of response alternatives.

• Alternated (AB) Reps. This setting makes it possible to present stimuli with the ABAB AAAA
paradigm (see [KingEtAl2013]). If the value is set to zero, then on each interval only one stimulus will
be presented, either the standard (A), or the comparison (B) stimulus. If the value is set to one, then the
correct interval will contain the an alternation of the standard and comparison stimuli (AB), while the
incorrect interval will contain two standards (AA). If the value is set to two, then the correct interval will
contain two alternations of the standard and comparison stimuli (ABAB) while the incorrect interval
will contain four repetitions of the standard and so on.

• Alternated (AB) Reps. ISI (ms) Set silent interval between stimuli presented within each AAAA or
ABAB interval.

• Pre-Trial Interval Choose whether to present the pre-trial interval.

• Pre-Trial Interval ISI (ms) Sets the duration of the silent interval between the end of pre-trial interval
and the start of the next interval. This widget is shown only if the pre-trial interval chooser is set to
“Yes”.

• Precursor Interval Choose whether to present the precursor interval.

• Precursor Interval ISI (ms) Sets the duration of the silent interval between the end of precursor
interval and the start of the next interval. This widget is shown only if the precursor interval chooser
is set to “Yes”.

• Postcursor Interval Choose whether to present the postcursor interval.

• Postcursor Interval ISI (ms) Sets the duration of the silent interval between the end of postcursor
interval and the start of the next interval. This widget is shown only if the postcursor interval chooser
is set to “Yes”.

3.2.3 General Widgets (right panel)

• Load Prm Load in memory experimental parameters stored in a .prm file. See Section Parameters
Files for more info.

• Save Prm Save experimental parameters stored in memory in a .prm file. See Section Parameters
Files for more info.

• Delete Delete the current block from the list of blocks stored in memory.

• Undo Unsaved Reset the parameters in the current block to the parameters that were last saved.

• Store Store the parameters changes in memory.

• Store ’n’ add Store the parameter changes in memory and add a new parameters block.

3.2. The Control Window 13

pychoacoustics Documentation, Release 0.6.8

• Store ’n’ go Store the parameter changes in memory and move to the next block storage point.

• New Block Create a new parameters block (the parameters of the current block will be copied in the
new one).

• Previous Move to the previous block storage point.

• Next Move to the next block storage point.

• Shuffle Shuffle the block presentation positions (see Block Presentation Position).

• Reset Reset the block presentation positions and move to the first block position (see Block Presenta-
tion Position).

• Jump to Block Jump to a given block storage point.

• Previous Position Move to the previous block presentation position (see Block Presentation Position).

• Next Position Move to the next block presentation position (see Block Presentation Position).

• Jump to Position Jump to the given block presentation position (see Block Presentation Position).

• Shift Blk. Down Shift the current block to a lower storage point.

• Shift Blk. Up Shift the current block to a higher storage point.

• Experiment Doc Show the available documentation for the current experiment.

3.2.4 Paradigm Widgets

3.2.5 1-Pair Same/Different Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block. Practice
trials are presented at the beginning of the block; the responses to these trials are not included in the
statistics.

3.2.6 Constant 1-Interval 2-Alternatives Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block. Practice
trials are presented at the beginning of the block; the responses to these trials are not included in the
statistics.

14 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

3.2.7 Constant m-Intervals n-Alternatives Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block. Practice
trials are presented at the beginning of the block; the responses to these trials are not included in the
statistics.

3.2.8 Multiple Constants ABX Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block. Practice
trials are presented at the beginning of the block; the responses to these trials are not included in the
statistics.

• No. Differences Set the number of comparisons to perform.

3.2.9 Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block for each condition.

• No. Practice Trials Set the number of practice trials to be presented in the current block for each
condition. The responses to these trials are not included in the statistics.

• No. Differences Set the number of conditions to be used in the current block.

3.2.10 Multiple Constants m-Intervals n-Alternatives Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block for each condition.

• No. Practice Trials Set the number of practice trials to be presented in the current block for each
condition. The responses to these trials are not included in the statistics.

• No. Differences Set the number of conditions to be used in the current block.

3.2.11 Odd One Out Paradigm Widgets

• No. Trials Set the number of trials to be presented in the current block.

• No. Practice Trials Set the number of practice trials to be presented in the current block. Practice
trials are presented at the beginning of the block; the responses to these trials are not included in the
statistics.

• No. Differences Set the number of comparisons to perform.

3.2. The Control Window 15

pychoacoustics Documentation, Release 0.6.8

3.2.12 PEST Paradigm Widgets

WARNING PEST support is experimental and has received very little testing!

• Procedure If “Arithmetic” the quantity defined by the step size will be added or subtracted to the
parameter that is adaptively changing. If “Geometric” the parameter that is adaptively changing will
be multiplied or divided by the quantity defined by the step size.

• Corr. Resp. Move Track This determines whether correct responses move the adaptive track down, or
up. Choose down if you want the adaptive parameter to decrease as a consequence of correct responses.
Choose up if you want the adaptive parameter to increase as a consequence of correct responses. For
example, in a signal detection task in which the signal level is varied you should choose Down (signal
level decreases as a consequence of correct responses). On the other hand, in a signal detection task in
which the noise level is varied you should choose Up (noise level increases as a consequence of correct
responses).

• Percent Correct Tracked Set the percentage correct point on the psychometric function to be tracked
by the adaptive procedure.

• Initial Step Size Set the initial step size.

• Minimum Step Size Set the minimum step size. When the minimum step size is reached the block is
terminated.

• Maximum Step Size Set the maximum allowed step size.

• W Deviation limit of the sequential test (see [TaylorAndCreelman1967]).

3.2.13 PSI Paradigm Widgets

3.2.14 Transformed Up-Down Paradigm Widgets

• Procedure If Arithmetic the step size will be added or subtracted to the parameter that is adaptively
varied. If Geometric the parameter that is adaptively varied will be multiplied or divided by the step
size.

• Corr. Resp. Move Track This determines whether correct responses move the adaptive track down, or
up. Choose down if you want the adaptive parameter to decrease as a consequence of correct responses.
Choose up if you want the adaptive parameter to increase as a consequence of correct responses. For
example, in a signal detection task in which the signal level is varied you should choose Down (signal
level decreases as a consequence of correct responses). On the other hand, in a signal detection task in
which the noise level is varied you should choose Up (noise level increases as a consequence of correct
responses).

• Rule Down Set the number of consecutive correct, or incorrect responses, depending on which type
of responses move the track down, needed to make a step down.

• Rule Up Set the number of consecutive correct, or incorrect responses, depending on which type of
responses move the track up, needed to make a step up.

16 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

• Initial Turnpoints Set the number of initial turnpoints. The initial turnpoints serve to bring quickly
the adaptive track towards the listener’s threshold. These turnpoints are not included in the threshold
estimate.

• Total Turnpoints Set the number of total turnpoints. The number of total turnpoints is equal to the
number of initial turnpoints that are not included in the threshold estimate plus the number of turnpoints
that you want to use for the threshold estimate.

• Step Size 1 Set the step size for the initial turnpoints.

• Step Size 2 Set the step size to be used after the number of initial turnpoints has been reached.

3.2.15 Transformed Up-Down Interleaved Paradigm Widgets

• Procedure If “Arithmetic” the quantity defined by the step size will be added or subtracted to the
parameter that is adaptively changing. If “Geometric” the parameter that is adaptively changing will
be multiplied or divided by the quantity defined by the step size.

• No. Tracks Set the number of adaptive tracks.

• Max. Consecutive Trials x Track Set the maximum number of consecutive trials per track.

• Turnpoints to Average Since track selection is pseudo-random, it may happen that for a track the
number of total turnpoints collected is greater than the number of total turnpoints requested for that
track. If “All final step size (even)” is selected, the threshold will be estimated using all the turnpoints
collected after the initial turnpoints, unless the number of these turnpoints is odd, in which case the
first of these turnpoints will be discarded. If “First N final step size” is selected the threshold will be
estimated using only the number of requested turnpoints collected after the initial turnpoints. If “Last
N final step size” is selected the threshold will be estimated using only the last 𝑁 turnpoints, where 𝑁
equals the number of requested turnpoints.

• Corr. Resp. Move Track X This determines whether correct responses move the adaptive track
down, or up. Choose Down if you want the adaptive parameter to decrease as a consequence of correct
responses. Choose Up if you want the adaptive parameter to increase as a consequence of correct
responses. For example, in a signal detection task in which the signal level is varied you should choose
Down (signal level decreases as a consequence of correct responses). On the other hand, in a signal
detection task in which the noise level is varied you should choose Up (noise level increases as a
consequence of correct responses).

• Rule Down Track X Set the number of consecutive correct responses needed to subtract the current
step size from the adaptive parameter (for arithmetic procedures) or divide the adaptive parameter by
the current step size (for geometric procedures) for track number 𝑋 .

• Rule Up Track X Set the number of consecutive correct, or incorrect responses, depending on which
type of responses move track X down, needed to make a step down for track X.

• Initial Turnpoints Track X Set the number of consecutive correct, or incorrect responses, depending
on which type of responses move track X up, needed to make a step up for track X.

• Total Turnpoints Track X Set the number of total turnpoints for track number 𝑋 . The number of total
turnpoints is equal to the number of initial turnpoints that are not included in the threshold estimate
plus the number of turnpoints that you want to use for the threshold estimate.

3.2. The Control Window 17

pychoacoustics Documentation, Release 0.6.8

• Step Size 1 Track X Set the step size for the initial turnpoints for track number 𝑋 .

• Step Size 2 Track X Set the step size to be used after the number of initial turnpoints has been reached
for track number 𝑋 .

3.2.16 UML Paradigm Widgets

• Psychometric Function The shape of the psychometric function used to fit the responses of the listener.

• Posterior Summary Choose whether to use the mean or the mode for the estimation

of parameter values from the Bayesian posterior distribution of parameter values.

• Plot UML Par. Space Generate a graphical summary of the parameter space used to

initialize the UML procedure.

• No. Trials Set the number of trials to be presented in the current block.

• Swpt. Rule Choose whether to use an up-down or a random sweetpoint selection rule.

• Rule Down The number of consecutive correct responses necessary to move to the lower sweetpoint.

• Stim. Min Set the minimum value of the stimulus dimension that is being varied adaptively (e.g.
signal level, or frequency difference).

• Stim. Max Set the maximum value of the stimulus dimension that is being varied adaptively (e.g.
signal level, or frequency difference).

• Stim. Scaling Indicate whether the stimulus dimension that is being varied adaptively should be scaled
linearly or logarithmically. The

• Suggested Lapse Swpt. The suggested stimulus value for the lapse rate sweetpoint. This value is used
as the lapse rate sweetpoint unless the current estimate of the psychometric function at the probability
value Pr. Corr. at Est. Lapse Swpt (see below) is larger. In the latter case the current estimate
of the psychometric function at the probability value Pr. Corr. at Est. Lapse Swpt is used as
the lapse rate sweetpoint, as long as it is smaller than Stim. Max, in which case Stim. Max will be
used as the lapse rate sweet point.

• Pr. Corr. at Est. Lapse Swpt. The proportion correct at the estimated lapse sweet point. If the
estimated lapse sweetpoint exceeds the will be used the suggested lapse sweetpoint, the estimated
lapse sweetpoint will be used as the lapse rate sweetpoint.

• Mid Point Min The minimum possible value of the midpoint of the psychometric function.

• Mid Point Max The maximum possible value of the midpoint of the psychometric function.

• Mid Point Step The size of the step between successive points in the grid defining the parameter space
for the midpoint of the psychometric function.

• Mid Point Prior The shape of the prior distribution for the midpoint of the psychometric function.

• Mid Point mu The mean of the prior distribution for the midpoint of the psychometric function.

• Mid Point STD The standard deviation of the prior distribution for the midpoint of the psychometric
function.

18 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

• Slope Min The minimum possible value of the slope of the psychometric function.

• Slope Max The maximum possible value of the slope of the psychometric function.

• Slope Step The size of the step between successive points in the grid defining the parameter space for
the slope of the psychometric function.

• Slope Spacing Indicate whether the spacing between successive points in the grid defining the param-
eter space for the slope of the psychometric function should be linear or logarithmic.

• Slope Prior The shape of the prior distribution for the slope of the psychometric function.

• Slope mu The mean of the prior distribution for the slope of the psychometric function.

• Slope STD The standard deviation of the prior distribution for the slope of the psychometric function.

• Lapse Min The minimum possible value of the lapse rate of the psychometric function.

• Lapse Max The maximum possible value of the lapse rate of the psychometric function.

• Lapse Step The size of the step between successive points in the grid defining the parameter space for
the lapse rate of the psychometric function.

• Lapse Spacing Indicate whether the spacing between successive points in the grid defining the pa-
rameter space for the lapse rate of the psychometric function should be linear or logarithmic.

• Lapse Prior The shape of the prior distribution for the lapse rate of the psychometric function.

• Lapse mu The mean of the prior distribution for the lapse rate of the psychometric function.

• Lapse STD The standard deviation of the prior distribution for the lapse rate of the psychometric
function.

• Load UML state from prev. blocks If Yes, at the end of each block the state of the UML posterior
parameter distribution will be saved in a file named after the condition label of the block. When a sub-
sequent block with the same condition label is encountered this file will be used to set the initial UML
posterior parameter distribution for the block instead of the priors specified in the control window.

3.2.17 Weighted Up-Down Paradigm Widgets

• Procedure If “Arithmetic” the quantity defined by the step size will be added or subtracted to the
parameter that is adaptively changing. If “Geometric” the parameter that is adaptively changing will
be multiplied or divided by the quantity defined by the step size.

• Corr. Resp. Move Track This determines whether correct responses move the adaptive track down, or
up. Choose down if you want the adaptive parameter to decrease as a consequence of correct responses.
Choose up if you want the adaptive parameter to increase as a consequence of correct responses. For
example, in a signal detection task in which the signal level is varied you should choose Down (signal
level decreases as a consequence of correct responses). On the other hand, in a signal detection task in
which the noise level is varied you should choose Up (noise level increases as a consequence of correct
responses).

• Percent Correct Tracked Set the percentage correct point on the psychometric function to be tracked
by the adaptive procedure. The ratio of the “Up” and “Down” steps is automatically adjusted by the
software to satisfy this criterion.

3.2. The Control Window 19

pychoacoustics Documentation, Release 0.6.8

• Initial Turnpoints Set the number of initial turnpoints. The initial turnpoints serve to bring quickly
the adaptive track towards the listener’s threshold. These turnpoints are not included in the threshold
estimate.

• Total Turnpoints Set the number of total turnpoints. The number of total turnpoints is equal to the
number of initial turnpoints that are not included in the threshold estimate plus the number of turnpoints
that you want to use for the threshold estimate.

• Step Size 1 Set the “Down” step size for the initial turnpoints. The “Up” step size is automatically
calculated to satisfy the “Percent Correct Tracked” criterion.

• Step Size 2 Set the “Down” step size to be used after the number of initial turnpoints has been reached.
The “Up” step size is automatically calculated to satisfy the “Percent Correct Tracked” criterion.

3.2.18 Weighted Up-Down Interleaved Paradigm Widgets

• Procedure If “Arithmetic” the quantity defined by the step size will be added or subtracted to the
parameter that is adaptively changing. If “Geometric” the parameter that is adaptively changing will
be multiplied or divided by the quantity defined by the step size.

• No. Tracks Set the number of adaptive tracks.

• Max. Consecutive Trials x Track Set the maximum number of consecutive trials per track.

• Turnpoints to Average Since track selection is pseudo-random, it may happen that for a track the
number of total turnpoints collected is greater than the number of total turnpoints requested for that
track. If “All final step size (even)” is selected, the threshold will be estimated using all the turnpoints
collected after the initial turnpoints, unless the number of these turnpoints is odd, in which case the
first of these turnpoints will be discarded. If “First N final step size” is selected the threshold will be
estimated using only the number of requested turnpoints collected after the initial turnpoints. If “Last
N final step size” is selected the threshold will be estimated using only the last 𝑁 turnpoints, where 𝑁
equals the number of requested turnpoints.

• Corr. Resp. Move Track X This determines whether correct responses move the adaptive track
number X down, or up. Choose Down if you want the adaptive parameter to decrease as a consequence
of correct responses. Choose Up if you want the adaptive parameter to increase as a consequence of
correct responses. For example, in a signal detection task in which the signal level is varied you should
choose Down (signal level decreases as a consequence of correct responses). On the other hand, in a
signal detection task in which the noise level is varied you should choose Up (noise level increases as
a consequence of correct responses).

• Percent Correct Tracked Set the percentage correct point on the psychometric function to be tracked
by the adaptive procedure for track number𝑋 . The ratio of the “Up” and “Down” steps is automatically
adjusted by the software to satisfy this criterion.

• Initial Turnpoints Track X Set the number of initial turnpoints for track number 𝑋 . The initial
turnpoints serve to bring quickly the adaptive track towards the listener’s threshold. These turnpoints
are not included in the threshold estimate.

• Total Turnpoints Track X Set the number of total turnpoints for track number 𝑋 . The number of total
turnpoints is equal to the number of initial turnpoints that are not included in the threshold estimate
plus the number of turnpoints that you want to use for the threshold estimate.

20 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

• Step Size 1 Track X Set the “Down” step size for the initial turnpoints for track number 𝑋 . The “Up”
step size is automatically calculated to satisfy the “Percent Correct Tracked” criterion.

• Step Size 2 Track X Set the “Down” step size to be used after the number of initial turnpoints has
been reached for track number𝑋 . The “Up” step size is automatically calculated to satisfy the “Percent
Correct Tracked” criterion.

3.2.19 The Menu Bar

A screenshot of the menu bar is shown in Figure The menu bar. This bar is located in the upper left corner
of the “Control Window”. Each menu will be described below.

Fig. 1: The menu bar

3.2.20 The File Menu

• Process Results (Plain Text) Process block summary results files to obtain session summary results
files. For more info see Section Process Results Dialog.

• Process Results Table Process block summary results table files to obtain session summary table
results files. For more info see Section Process Results Dialog.

• Open Results File Open the file where pychoacoustics is currently saving data with the default text
editor.

• Exit Close pychoacoustics.

3.2.21 The Edit Menu

• Edit Preferences Edit application preferences. See Section Edit Preferences Dialog for further info.

• Edit Phones Edit the phones database, and set the calibration levels for your phones. See Section Edit
Phones Dialog for further info.

• Edit Experimenters Edit the experimenters database. See Section Edit Experimenters Dialog for
further info.

3.2. The Control Window 21

pychoacoustics Documentation, Release 0.6.8

3.2.22 The Tools Menu

• Swap Blocks Swap the storage position of two parameter blocks.

3.2.23 The Help Menu

• Manual (pdf) Open a pdf copy of the manual.

• Manual (html) Open a html copy of the manual.

• Fortunes Show psychoacoustics fortunes. I’m always collecting new ones, so if you happen to know
any interesting ones, please, e-mail them to me <sam.carcagno@gmail.com> so that I can add them
to the collection.

• About pychoacoustics Show information about the licence, the version of the software and the version
of the libraries it depends on.

3.2.24 The “what’s this?” Button.

If you click on this button, and then click on a widget, you can get some information about the widget (this
is not implemented for all widgets).

3.3 Process Results Dialog

Figure The process results dialog show a screenshot of the process results dialog. The dialog is the same for
all procedures, except that for procedures in which d’ is computed, there is an additional checkbox asking
whether to apply a correction to hit/false alarm rates of zero or one. For information on the format of the
result files, please see Section Result Files. For tabular results files, if both matplotlib and pandas are installed
there are additional checkboxes allowing to plot the results in a window or on a pdf file. Not all experimental
paradigms support plotting.

• Input File(s) Give the filepath of one or more files to be processed. The “Choose File” button can be
used to select the file(s). Multiple filepaths should be separated by a semicolon “;”.

• Output File Give the filename of the output file.

• For each condition process:

– All Blocks If checked, all blocks in the result file(s) will be processd.

– Last X Blocks If checked, only the last 𝑋 blocks will be processed.

– Blocks in the following range If checked, only blocks in the specified range will be processed
(indexing starts from 1).

• d-prime correction If checked, convert hit rates of 0 and 1 to 1/2𝑁 and 1 − 1/(2𝑁) respectively,
where 𝑁 is the number of trials, to avoid infinite values of d’ (see [MacmillanAndCreelman2005] p.
8). This checkbox is available only for some paradigms.

22 Chapter 3. Graphical User Interface

mailto:sam.carcagno@gmail.com

pychoacoustics Documentation, Release 0.6.8

Fig. 2: The process results dialog

• When finished, open results file If checked, the output file will be opened in the default text editor
when processing has finished.

• When finished, open results folder If checked, the folder containing the output file will be opened
when processing has finished.

• Run! Click this button to process the result files.

3.4 Edit Preferences Dialog

The preferences dialog is divided into several tabs. These are described in turn below.

3.4.1 General

• Language (requires restart) Choose the application language. At the moment and for the foreseeable
future only English is supported.

• Country (requires restart) Set the country locale to be used for the application. Some things (for
example the way dates are written in result files) depend on this setting.

• Response Box Language (requires restart) Choose the language to be used for the “Response Box”.
This sets the language to be used for the button labels and other GUI elements that the experimental
listener is presented with.

• Response Box Country (requires restart) Set the country locale for the response box.

• csv separator Choose the separator field to be used when writing the csv tabular result files.

3.4. Edit Preferences Dialog 23

pychoacoustics Documentation, Release 0.6.8

• Warn if listener name missing If checked, pop up a warning message if the listener name is missing
at the beginning of a session.

• Warning if session label missing If checked, pop up a warning message if the session label is missing
at the beginning of a session.

• Process results when finished If checked, process automatically the block summary file to generate
the session summary file at the end of the experiment.

• d-prime correction If checked, when automatically processing result files, convert hit rates of 0 and
1 to 1/2𝑁 and 1− 1/(2𝑁) respectively, where 𝑁 is the number of trials, to avoid infinite values of d’
(see [MacmillanAndCreelman2005] p. 8).

• Max Recursion Depth (requires restart) Set the maximum recursion depth of the Python inter-
preter stack. This setting should be changed only if you intend to run pychoacoustics in automatic
or simulated listener response mode (see Response Mode). Beware, setting a max recursion depth
value smaller than the default value may cause pychoacoustics to crash or not even start. In case
pychoacoustics does not start because of this, delete your preferences settings file to restore the
default max recursion depth value.

• Execute command at startup Executes an OS command at startup. May be useful to initialize a
soundcard in certain situations.

3.4.2 Sound

• Play Command Set an internal or external command to play sounds.

• Device Set the soundcard to be used to play sounds. This chooser is available only for certain internal
play commands (currently alsaaudio and pyaudio).

• Buffer Size (samples) Set the buffer size in number of samples to be used to output sounds. This
chooser is available only for certain internal play commands (currently alsaaudio and pyaudio).

• Default Sampling Rate Set the default sampling rate.

• Default Bits Set the default bit depth.

• Wav manager (requires restart) Choose the wav manager.

• Write wav file Write wav files with the sounds played on each trial in the current pychoacoustics
working directory.

• Write sound sequence segment wavs For sound sequences, write a wav file for each segment of the
sequence in the current pychoacoustics working directory.

• Append silence to each sound (ms) Append a silence of the given duration at the end of each sound.
This is useful on some versions of the Windows operating system that may cut the sound buffer before
it has ended resulting in audible clicks.

24 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

3.4.3 Response Box

• Response Box Button Font Choose the font for the response box button.

• Correct Light Color Choose the color of the feedback light after a correct response.

• Incorrect Light Color Choose the color of the feedback light after an incorrect response.

• Neutral Light Color Choose the color of the feedback light when specific feedback as to the correct-
ness of the response is not given. A light is instead simply flashed to acknowledge that the response
has been recorded.

• Off Light Color Choose the color of the response light when the response light is off (that is when
feedback of any kind is not being given.

• Response Light Font Choose the font of used to present text in the response light area when feedback
is textual.

• Correct Response Text Feedback Choose the feedback text to show in case of a correct response. If
left to (Default), a default message will be shown in the language chosen for the response box (if
available). Applies only if feedback is textual.

• Incorrect Response Text Feedback Choose the feedback text to show in case of an incorrect response.
If left to (Default), a default message will be shown in the language chosen for response box (if
available). Applies only if feedback is textual.

• Neutral Response Text Feedback Choose the feedback text to show when specific feedback as to the
correctness of the response is not given. If left to (Default), a default message will be shown in the
language chosen for response box (if available). Applies only if feedback is textual.

• Correct Text Color Choose the color of the feedback text to show in case of a correct response.
Applies only if feedback is textual.

• Incorrect Response Text Feedback Choose the color of the feedback text to show in case of an in-
correct response. Applies only if feedback is textual.

• Neutral Response Text Feedback Choose the color of the feedback text to show when specific feed-
back as to the correctness of the response is not given. Applies only if feedback is textual.

3.4.4 Notifications

• Play End Message If checked, play a wav file at the end of the experiment. This could be short message
to let the listeners know they have finished and thank them for their participation in the experiment.
One or more wav files need to be set through the “Choose wav” button for this work.

• Choose wav Choose the wav file to be played as the end message. Clicking on this button brings up
another dialog where you can select the wav files to be played and their output RMS. Only one of the
wav files listed here and with the “Use” flag set to will be randomly chosen and played.

• blocks before end of experiment Set how many blocks before the end of the experiment the two
actions listed below (send notification e-mail and execute custom command) should be performed.

• Send notification e-mail If checked, send a notification e-mail to the experimenter to notify her that
the experiment is about to finish.

3.4. Edit Preferences Dialog 25

pychoacoustics Documentation, Release 0.6.8

• Execute custom command If checked, execute an operating system command before the end of the
experiment. This command could be used to automatically send an sms for example.

• Send data via e-mail At the end of the experiment, send the results file to the experimenter .

• Execute custom command At the end of the experiment, execute an operating system command.

• Outgoing Server (SMTP) Set the name of the SMTP server to be used by pychoacoustics to send
e-mails.

• Port Set the port number for the SMTP server.

• Security Set the security protocol for network exchanges with the SMTP server.

• Server requires identification Check this if the SMTP server requires identification.

• Username Set the username for the SMTP server.

• Password Set the password for the SMTP server.

• Send test e-mail Send a test e-mail to check that the server settings are OK.

3.4.5 EEG

• ON Trigger The ON trigger value (decimal).

• OFF Trigger The OFF trigger value (decimal).

• Trigger Duration (ms) The duration of the trigger in milliseconds.

3.5 Edit Phones Dialog

A screenshot of the “Edit Phones” dialog is

shown in Figure Edit Phones Dialog.

Most of the fields should be pretty much self-explanatory. Using this dialog you can add head-
phones/earphones models to the phones database. The phone with the “Default” flag set will be selected
by default when pychoacoustics is started. In the “Max Level” field you should enter the level in dB SPL
that is output by the phone for a full amplitude sinusoid (a sinusoid with a peak amplitude of 1). This value
will be used by pychoacoustics to output sounds at specific levels in dB SPL. On the rightmost panel of
the dialog you have facilities to play a sinusoid with a specified level. You can use these facilities to check
with a SPL meter (or a voltmeter depending on how you’re doing it) that the actual output level corresponds
to the desired output level. Using these facilities you can also play a full amplitude sinusoid: you need to set
the level of the sinuoid to the “Max Level” of the phone in the dialog (whatever it is). Be careful because it
can be very loud! More detailed instructions on the calibration procedure are provided below.

26 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

Fig. 3: Edit Phones Dialog

3.5.1 Calibrating with an SPL meter

Open the “Edit Phones” dialog. Select the phone for which you want to calibrate and note its MaxLevel (by
default this is set to 100 dB SPL). Use the rightmost panel to play a 1-kHz sinusoid at the MaxLevel (e.g. 100
dB), and read the measurement on the SPL meter. Change the MaxLevel for the phone to the measurement
you just read on the SPL meter.

You don’t actually need to play the sinusoid at the MaxLevel (and it may be better not to do so because you
may get distortions at very high levels). Instead, you could for example play it at a level equal to MaxLevel -
20. The reading that you would obtain from the SPL meter would then be 20 dB below the MaxLevel. You
would then simply add 20 to the SPL meter reading and set MaxLevel to this value.

3.5.2 Calibrating with a voltmeter

Open the “Edit Phones” dialog. Select the phone for which you want to calibrate and note its MaxLevel (by
default this is set to 100 dB SPL). Use the rightmost panel to play a 1-kHz sinusoid at the MaxLevel (e.g.
100 dB), and note the RMS voltage reading from a voltmeter connected to a cable receiving input from the
soundcard. Manufacturers of professional phones usually provide datasheets indicating what is the dB SPL
level output by the phone when it is driven by a 1-volt RMS sinusoid at 1 kHz. You can use this figure to
calculate what the dB SPL output is for the 1-kHz sinusoid. Suppose that the dB SPL output for a 1-volt RMS
sinusoid at 1 kHz is 𝐿𝑟, and the voltage output for the sinusoid played at MaxLevel is 𝑉𝑥, the dB SPL output
for the sinusoid (𝐿𝑥) will be:

𝐿𝑥 = 𝐿𝑟 + 20𝑙𝑜𝑔10(𝑉𝑥)

if the reference RMS voltage in the datasheet is not 1 but some other value 𝑉𝑟, 𝐿𝑥 can be calculated as:

𝐿𝑥 = 𝐿𝑟 + 20𝑙𝑜𝑔10(𝑉𝑥/𝑉𝑟)

3.5. Edit Phones Dialog 27

pychoacoustics Documentation, Release 0.6.8

Finally, set the MaxLevel for the phone you’re calibrating to 𝐿𝑥. As for the SPL meter calibration you do
not actually need to play the sinusoid at the MaxLevel (and it may be better not to do so because you may
get distortions at very high levels). Instead, you could for example play it at a level equal to MaxLevel - 20.
You would then add back the 20 dBs in the equation to compute 𝐿𝑥:

𝐿𝑥 = 𝐿𝑟 + 20𝑙𝑜𝑔10(𝑉𝑥) + 20

3.6 Edit Experimenters Dialog

A screenshot of the “Edit Experimenters” dialog is shown in Figure Edit Experimenters Dialog.

Fig. 4: Edit Experimenters Dialog

Most of the fields should be pretty much self-explanatory. Here you can add the details of the experimenters
that work in your lab in the experimenter database. The main functions of this database at the moment are a)
writing the experimenter name in the results file; b) using the experimenter e-mail for sending notifications
and/or results files (see Section sec-edit_pref_dia_notifications).

3.7 The Response Box

The “response box” consists of a large button (the “status button”) that is used to start a block of trials, a
feedback light to display trial by trial feedback, interval lights to mark observation intervals, and response
buttons. The responses can be given either by means of mouse clicks, or using the numeric keypad (key “1”
for the first button, key “2” for the second button etc. . .). Responses given before all observation intervals
have been presented are not accepted.

The status button can be activated by pressing the Ctrl+R shortcut. At the start of each block the label of
the “Status Button” is set to “Start”. Once the listener starts a block of trials the label of the status button
changes to “Running”. When a whole series of blocks is finished the label of the status button changes to
“Finish”. If no blocks are stored in memory the label of the status button is set to “Wait”.

28 Chapter 3. Graphical User Interface

pychoacoustics Documentation, Release 0.6.8

On the top left corner of the response box there is a semi-hidden menu signalled by a little hyphen (“-”). If
you click on it you have access to two functions. The “Show/Hide Control Window” function can be used to
hide the control window while the experiment is running. This is useful because it prevents the listener from
accidentally changing your experimental parameters or accidentally closing pychoacoustics (the response
box itself has no “close” button, so it is not possible to close that). The “Show/Hide progress Bar” function
can be used to display a progress bar at the bottom of the response box. The progress bar estimates what
percentage of the experiment has been completed. This estimate depends on the procedure used (for constant
procedures it is based on the number of trials done, while for adaptive procedures it is based on the number
of turnpoints reached) and on the specific parameters of a given experiment (trial duration, number of trials,
or number or turnpoints, all of which can differ between blocks), so in some cases the estimate can be off the
mark. The “Show/Hide block progress Bar” can be used to show the position of the current block and the
total number of blocks.

3.7. The Response Box 29

pychoacoustics Documentation, Release 0.6.8

30 Chapter 3. Graphical User Interface

CHAPTER

FOUR

COMMAND LINE USER INTERFACE

In order to automate certain tasks, or perform some advanced operations, pychoacoustics can be called
from the command line with a number of command line options. The list of possible command line options
is shown below:

• -h, --help Show help message.

• -f, --file FILE Load parameters file FILE.

• -r, --results FILE Save the results to file FILE.

• -l, --listener LISTENER Set listener label to LISTENER.

• -s, --session SESSION Set session label to SESSION.

• -c, --conceal Hide Control and Parameters Windows.

• -p, --progbar Show the progress bar.

• -b, --blockprogbar Show the progress bar.

• -q, --quit Quit after finished.

• -a, --autostart Automatically start the first stored block.

• -k, --reset Reset block positions.

• -z, --seed Set random seed.

• -x, --recursion-depth Set the maximum recursion depth (this overrides the maximum recursion
depth set in the preferences window).

• -g, --graphicssystem sets the backend to be used for on-screen widgets and QPixmaps. Available
options are raster and opengl.

• -d, --display This option is only valid for X11 and sets the X display (default is $DISPLAY).

each command line option has a short (single dash, one letter) and long (double dash, one word) form, for
example to show the help message, you can use either of the two following commands:

$ pychoacoustics -h
$ pychoacoustics --help

31

pychoacoustics Documentation, Release 0.6.8

32 Chapter 4. Command Line User Interface

CHAPTER

FIVE

PARADIGMS

Todo: Give better description of the available paradigms.

5.1 Available Paradigms

5.1.1 Transformed Up-Down

This paradigm implements the transformed up-down adaptive procedures described by [Levitt1971]. It can
be used with 𝑛-intervals, 𝑛-alternatives forced choice tasks, in which 𝑛 − 1 “standard” stimuli and a single
“comparison” stimulus are presented, each in a different temporal interval. The order of the intervals is
randomized from trial to trial. The “comparison” stimulus usually differs from the “standard” stimuli for
a single characteristic (e.g. pitch or loudness), and the listener has to tell in which temporal interval it was
presented. A classical example is the 2-intervals 2-alternatives forced-choice task. Tasks that present a
reference stimulus in the first interval, and therefore have 𝑛 intervals and 𝑛−1 alternatives are also supported
(see [GrimaultEtAl2002] for an example of such tasks)

5.1.2 Transformed Up-Down Interleaved

This paradigm implements the interleaved transformed up-down procedure described by [Jesteadt1980] .

5.1.3 Weighted Up-Down

This paradigm implements the weighted up-down adaptive procedure described by [Kaernbach1991].

33

pychoacoustics Documentation, Release 0.6.8

5.1.4 Weighted Up-Down Interleaved

This paradigm combines the interleaved procedure described by [Jesteadt1980] with the weighted up-down
method described by [Kaernbach1991].

5.1.5 Constant m-Intervals n-Alternatives

This paradigm implements a constant difference method for forced choice tasks with 𝑚-intervals and 𝑛-
alternatives. For example, it can be used for running a 2-intervals, 2-alternatives forced-choice frequency-
discrimination task with a constant difference between the stimuli in the standard and comparison intervals.

5.1.6 Constant 1-Interval 2-Alternatives

This paradigm implements a constant difference method for tasks with a single observation interval and two
response alternatives, such as the “Yes/No” signal detection task.

5.1.7 Constant 1-Pair Same/Different

This paradigm implements a constant difference method for “same/different” tasks with a single pair of
stimuli to compare.

5.1.8 Multiple Constants 1-Pair Same/Different

This paradigm implements a constant difference method for “same/different” tasks with multiple pairs of
stimuli to compare.

5.1.9 Multiple Constants ABX

This paradigm implements a constant difference method for “ABX” tasks with multiple pairs of stimuli to
compare.

5.1.10 Odd One Out

This paradigm implements a three-alternatives oddity procedure (see [VersfeldEtAl1996]).

34 Chapter 5. Paradigms

pychoacoustics Documentation, Release 0.6.8

5.1.11 PEST

This paradigm implements the PEST adaptive procedure described by [TaylorAndCreelman1967]. However,
beware that support for this procedure in pychoacoustics is very experimental. Its implementation has
received very little testing.

5.1.12 PSI

This paradigm implements the PSI+ and PSI-marginal adaptive procedures described by [Prins2013].

5.1.13 UML

This paradigm implements the updated maximum likelihood (UML) adaptive procedure described by
[ShenAndRichards2012].

5.1. Available Paradigms 35

pychoacoustics Documentation, Release 0.6.8

36 Chapter 5. Paradigms

CHAPTER

SIX

RESULT FILES

pychoacoustics outputs several types of result files, these are listed in Table List of result files produced
by pychoacoustics

Table 1: List of result files produced by pychoacoustics

Type Example Formatting Suffix
Block summary myres.txt Plain “.txt”
Trial summary myres_trial.txt Plain “_trial.txt”
Session Summary myres_sess.txt Plain “_sess.txt”
Tabular Block Summary myres_table.csv Tabular “_table.csv”
Tabular Trial Summary myres_table_trial.csv Tabular “_table_trial.csv”
Tabular Session Summary myres_table_sess.csv Tabular “_table_sess.csv”

there are both “plain text” and “tabular” versions of result files. The plain text version stores along with the
results each parameter that was used during the experiment. The tabular result files on the other hand store a
smaller number of parameters, although additional parameters can be stored if the experimenter wishes to do
so (see Tabular Results Files). An important advantage of tabular result files is that they are easy to import
in other software (e.g. R, Libreoffice Calc) for data analysis.

The plain-text “block-summary” and tabular “block-summary” result files contain summaries for each exper-
imental block that was run. The plain-text “trial-summary” and tabular “trial-summary” result files instead
contain information on each single trial. The “block-summary” result files (either in plain or tabular format)
can be usually processed to obtain “session-summary” files. The “session-summary” files contain sum-
maries for an entire experimental session. In these files the results are averaged across different blocks that
have exactly the same stored parameters.

In order to obtain the session-summary files you need to use the appropriate functions that can be accessed
from the pychoacoustics “File” menu. Alternatively, you can check the “Proc. Res.” and “Proc. Res.
Table” checkboxes in the control window (see General Widgets (left panel)) to let pychoacoustics auto-
matically process these files at the end of an experimental session. If processing the result files manually,
choose “Process Results (Plain Text)” from the “File” menu, to convert a block-summary file into a session-
summary file. Choose “Process Results Table” to convert a tabular block-summary file into a tabular session
summary file. You can choose to process all blocks present in the file (default action), the last 𝑛 blocks (of
each condition), or a range of blocks (for each condition). Once you have selected the file to process and
specified the blocks to process you can click “Run!” to perform the processing. The functions that process
the block-summary files also allow you to plot the results. Please, note that both the ability to process the

37

pychoacoustics Documentation, Release 0.6.8

block-summary files and plot the results are not available for all paradigms. A list of the result files process-
ing and plotting facilities available for each paradigm is given in Table Process results and plot facilities for
various paradigms

Table 2: Process results and plot facilities for various paradigms

Procedure Proc. Res. Proc. Res. Table Plot
Constant 1-Interval 2-Alternatives Yes Yes Yes
Constant 1-Pair Same/Different Yes Yes Yes
Constant m-Intervals n-Alternatives Yes Yes Yes
Multiple Constants ABX Yes Yes Yes
Multiple Constants 1-Interval 2-Alternatives Yes Yes Yes
Multiple Constants 1-Pair Same/Different Yes Yes Yes
Multiple Constants m-Intervals n-Alternatives Yes Yes Yes
Multiple Constants Odd One Out No Yes No
Multiple Constants Sound Comparison No No No
PEST Yes Yes Yes
PSI No No No
Transformed Up-Down Yes Yes Yes
Transformed Up-Down Interleaved Yes Yes Yes
UML No No No
Weighted Up-Down Yes Yes Yes
Weighted Up-Down Interleaved Yes Yes Yes

6.1 Tabular Results Files

The tabular results files are comma separated value (CSV) text files that can be opened in a text file editor or
a spreadsheet application. The separator used by default is the semicolon “;”, but another separator can be
specified in the pychoacoustics preferences window. When processing block-summary table files, make
sure that the csv separator in the “Process Results Table” window matches the separator used in the file.

The tabular result files contain three sets of columns:

• paradigm-specific columns (e.g. threshold estimate, for the transformed up-down procedure, or d’ for
the constant 1-pair same/different procedure). The columns that are specific to each paradigm will be
described in Section Result Files by Paradigm

• fixed columns that are common to all paradigms (e.g. date and time at which a block of trials started).
Among these columns there is a “condition” column, where the “condition label” is written (see Gen-
eral Widgets (left panel)). It is a good practice to assign a condition label as it makes it easy to sort the
results as a function of the experimental condition.

• additional user-defined columns specific to each experiment

The way in which these additional user-defined columns are stored is as follows: Several text fields and
choosers in pychoacoustics have what we will call inSummary check boxes. Some of these are shown
marked by ellipses in Figure inSummary check boxes.

38 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Fig. 1: inSummary check boxes

In the example shown in Figure inSummary check boxes the frequency, level and ear parameters will be
stored, each in a separate column, in the tabular block-summary file, while the parameters corresponding to
the unchecked boxes (duration, ramps and type) will be not. This is useful if you are running an experiment
in which you are systematically varying only a few parameters across different blocks, and want to keep track
of only those parameters. The inSummary check boxes also provide visual landmarks for quickly spotting
the widgets with your parameters of interest in pychoacoustics.

Notice that the “Process Results Table” function, as mentioned in the previous section, will average the
results for blocks with the same parameters stored in the tabular block-summary file. This means that if you
are varying a certain parameter (e.g., level) across blocks, but you don’t check the corresponding inSummary
check box (for each block), the value of the parameter will not be stored in the tabular block-summary file,
and as a consequence the “Process Results Table” function will not be able to sort the blocks according to the
“level” parameter, and will average the results across all blocks. Not all is lost because the “level” parameter
will be nonetheless stored in the “block-summary” plain-text file, but you will need more work before you
can process your results with a statistical software package.

Figure Transformed up-down table block-summary result file shows a table block-summary result file from a
transformed up-down procedure opened in Libreoffice Calc.

Fig. 2: Transformed up-down table block-summary result file

the first two columns (“threshold geometric”, and “SD”) are specific to the transformed up-down procedure.
The set of fixed columns that are common to all paradigms is described below:

• condition the the “condition label” for the block (see General Widgets (left panel))

• listener the listener identifier (see General Widgets (left panel))

• session the session identifier (see General Widgets (left panel))

• experimentLabel the label assigned to the current experiment (see General Widgets (left panel))

• date the date (DD/MM/YYYY) at which the block started

• time the time at which the block started

• duration how long it took for the listener to complete the block, in seconds

6.1. Tabular Results Files 39

pychoacoustics Documentation, Release 0.6.8

• block the block presentation position

• experiment the name of the experiment that was run

• paradigm the paradigm with which the experiment was run

The tabular trial-summary result files contain information on each single trial. For example for the trans-
formed up-down paradigm they record the response (1 for correct, 0 for incorrect), and the value of the
adaptive difference (the variable that is being varied adaptively to find its threshold). This trial by trial infor-
mation can be used for various purposes, for example, it can be used to fit psychometric functions from the
results of adaptive procedures.

The tabular result files contain four sets of columns:

• paradigm-specific columns (e.g. threshold estimate, for the transformed up-down procedure, or d’ for
the constant 1-pair same/different procedure). The columns that are specific to each paradigm will be
described in Section Result Files by Paradigm

• experiment-specific columns, for example a frequency discrimination task with roving frequency of
the standard may store the value of the standard frequency on each trial

• fixed columns that are common to all paradigms (e.g. date and time at which a block of trials started).
Among these columns there is a “condition” column, where the “condition label” is written (see Gen-
eral Widgets (left panel)). It is a good practice to assign a condition label as it makes it easy to sort the
results as a function of the experimental condition.

• additional user-defined columns specific to each experiment

Todo: For the experiment-specific column in tabular trial-summary files, make reference to
prm[‘additional_parameters_to_write’] when it will be explained in the writing your own experiments sec-
tion

6.2 Plain-Text Result Files

The “block-summary” result and the “trial-summary” result files have a header for each experimental block.
The start of the header is marked by a line of 54 asterixes, an example is given below:

pychoacoustics version: 0.2.73; build date: 01-Mar-2014 09:45
Experiment version: pychoacoustics.default_experiments.audiogram 0.2.73 01-Mar-
→˓2014 09:45
Block Number: 1
Block Position: 1
Start: 01/03/2014 14:07

the header gives info on the software version, the experiment version (if available), the block storage point
(Block Number), the block presentation position (Block Position), and has a timestamp marking the date and
time at which the block was started.

40 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

After the header, there is a “parameters section” listing the experimental parameters. The beginning and the
end of this section are marked by a line of 54 plus signs, a snippet of the parameters section is shown below:

+++

Experiment Label:
Session Label:
Condition Label:
Experiment: Audiogram
Listener: L3
[...]
Response Light Duration (ms): 500
ISI: 500

Ear: Right
Signal Type: Sinusoid
Frequency (Hz): 1000
Level (dB SPL): 50
Duration (ms): 180
Ramps (ms): 10
+++

After the parameters section there is a “results section”. The specific structure of this section depends on
the paradigm (e.g. transformed up-down, or constant 1-interval 2-alternatives) used. The specific structure
of the result section for each type of procedure will be illustrated in Section Result Files by Paradigm. The
results section of a block-summary result file will contain summary statistics for a whole block of trials,
while the results section of a trial-summary result file will contain trial-by-trial information. Besides having
paradigm-specific information, “trial-summary” result files may also have experiment specific information.
For example for a frequency discrimination task with roving frequency of the standard, the trial-summary
result file may store the value of the standard frequency on each trial. For both “block-summary”, and “trial-
summary” result files the result section ends invariably with a timestamp marking the date and time at which
the experimental block was completed, and a further line indicating how much time the listener took to
complete the block of trials.

Todo: For the experiment-specific column in plain-text trial-summary result files, make reference to
prm[‘additional_parameters_to_write’] when it will be explained in the writing your own experiments sec-
tion

The “session-summary” result files have a section listing the parameters used for each experimental condi-
tion. After this section, a summary statistic for each block of the given experimental condition is presented,
followed by a summary statistic for all the blocks. The specific structure of this result section for each type
of procedure will be illustrated in Section Result Files by Paradigm.

6.2. Plain-Text Result Files 41

pychoacoustics Documentation, Release 0.6.8

6.3 Result Files by Paradigm

In this section the fields of result files that are specific to each paradigm will be described.

6.3.1 Transformed Up-Down and Weighted Up-Down

Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down)

The transformed up-down and weighted up-down tabular block-summary result files have two paradigm-
specific columns:

• threshold_arithmetic or threshold_geometric the estimate of the threshold derived by averaging
the final turnpoints of the adaptive track. Whether the column is named “threshold_arithmetic”, or
“threshold_geometric” depends on whether the adaptive track followed a geometric, or an arithmetic
procedure. For “threshold_arithmetic” the threshold estimate is the arithmetic mean of the turnpoints,
for “threshold_geometric” the threshold estimate is the geometric mean of the turnpoints.

• SD the standard deviation of the final turnpoints of the adaptive track. If the procedure is geometric the
geometric standard deviation is calculated, otherwise the arithmetic standard deviation is calculated.

Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down)

The transformed up-down and weighted up-down tabular trial-summary result files have two paradigm-
specific columns:

• adaptive_difference the value of the adaptive difference, that is the variable that is being varied adap-
tively to find its threshold

• response 1 if the response was correct, 0 otherwise

Tabular Session-Summary Result Files (Transformed Up-Down and Weighted Up-Down)

The transformed up-down and weighted up-down tabular session-summary result files have two paradigm-
specific columns:

• threshold_arithmetic or threshold_geometric the arithmetic, or geometric average of the threshold
estimates obtained in each block

• SE the arithmetic or geometric standard error of the threshold estimates obtained in each block

42 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down)

The results section of a transformed up-down procedure are shown below (weighted up-down result files have
the same structure):

42.00 62.00 58.00 66.00 | 60.00 64.00 58.00 62.00 54.00 56.00 50.00 52.00 |

turnpointMean = 57.00, s.d. = 4.90
B1 = 30, B2 = 22

the first line lists the turnpoints; the first | sign separates the initial turnpoints, which are not included in the
threshold estimate, from the final turnpoints. The second line shows the threshold estimate (turnpointMean)
which is obtained by averaging the final turnpoints, and the standard deviation of the turnpoints. The final
line lists the number of times each button was pressed by the listener. In the above case the listener pressed
button one 30 times and button two 22 times. This may be useful to detect any biases in the choice of
interval. The results above were collected using an arithmetic procedure. When the results are obtained
with a geometric procedure the second line of the results section labels the threshold estimate as geometric
turnpointMean, as shown in the example below:

0.08 5.00 1.25 80.00 | 10.00 40.00 10.00 200.00 25.00 200.00 6.25 25.00 |

geometric turnpointMean = 29.82, s.d. = 3.75
B1 = 22, B2 = 40

and the threshold and standard deviation values are computed as geometric mean, and geometric standard
deviation, respectively.

Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down)

A snippet from a transformed up-down trial-summary result file is shown below:

50.0; 1;
50.0; 1;
46.0; 1;
46.0; 1;
42.0; 1;
42.0; 0;
46.0; 0;
50.0; 1;

each row represents a trial, the first colum shows the value of the adaptive difference for that trial (e.g. the
level of the signal in a signal detection task), while the second column indicates whether the response was
correct (1), or incorrect (0). Note that depending on the experiment, additional variables may be stored in a
trial-summary result file. For example, in the F0DL experiment, which has an option to use either a fixed,
or a roving F0, the F0 for the trial is listed in the third column of the trial-summary result file, as shown
below:

6.3. Result Files by Paradigm 43

pychoacoustics Documentation, Release 0.6.8

20.0; 1; 408.58891957189206 ;
20.0; 1; 409.72312872085564 ;
5.0; 1; 474.15423804320403 ;
5.0; 1; 404.43567907073964 ;
1.25; 1; 456.6493420827598 ;
1.25; 1; 406.34270314673716 ;

Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-Down)

The result section of a session-summary result file for a transformed up-down procedure is shown below:

57.00
44.00

Mean = 50.50
SE = 6.50

the session included two blocks of trials, and the first two lines list the threshold estimate for each of these
blocks. The following lines present the mean and the standard error of these threshold estimates. If the
procedure is arithmetic, the mean and the standard error are calculated as the arithmetic meand and the
arithmetic standard error. If the procedure is geometric, the mean and the standard error are calculated as
the geometric meand and the geometric standard error.

6.3.2 Transformed Up-Down and Weighted Up-Down Interleaved Result Files

Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down Inter-
leaved)

For each adaptive track, the transformed up-down and weighted up-down interleaved tabular block-summary
result files have two paradigm-specific columns:

• threshold_arithmetic_trackX or threshold_geometric_trackX the estimate of the threshold derived
by averaging the final turnpoints of the adaptive track number X. Whether the column is named “thresh-
old_arithmetic”, or “threshold_geometric” depends on whether the adaptive track followed a geomet-
ric, or an arithmetic procedure. For “threshold_arithmetic” the threshold estimate is the arithmetic
mean of the turnpoints, for “threshold_geometric” the threshold estimate is the geometric mean of the
turnpoints.

• SD_trackX the standard deviation of the final turnpoints of the adaptive track number X. If the pro-
cedure is geometric the geometric standard deviation is calculated, otherwise the arithmetic standard
deviation is calculated.

44 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down Inter-
leaved)

Not currently implemented.

Tabular Session-Summary Result Files (Transformed Up-Down and Weighted Up-Down In-
terleaved)

For each adaptive track, the transformed up-down and weighted up-down interleaved tabular session-
summary result files have two paradigm-specific columns:

• threshold_arithmetic_trackX or threshold_geometric_trackX the arithmetic, or geometric average
of the threshold estimates obtained in each block for the adaptive track number X

• SE_trackX the arithmetic or geometric standard error of the threshold estimates obtained in each block
for the track number X

Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down In-
terleaved)

The result section of a plain-text block-summary file with a transformed up-down interleaved paradigm is
shown below:

TRACK 1:
-212.00 -208.00 -212.00 -200.00 | -204.00 -200.00 -204.00 -202.00 -204.00 -202.
→˓00 -208.00 -206.00 -208.00 -202.00 -206.00 -202.00 -208.00 -206.00 -208.00 -
→˓204.00 -208.00 -204.00 -210.00 -206.00 -210.00 -204.00 -206.00 -204.00 |

turnpointMean = -205.25, s.d. = 2.69
B1 = 44, B2 = 47

TRACK 2:
-208.00 -200.00 -208.00 -204.00 | -214.00 -212.00 -228.00 -224.00 -226.00 -224.
→˓00 -232.00 -230.00 -232.00 -230.00 -238.00 -232.00 |

turnpointMean = -226.83, s.d. = 7.55
B1 = 29, B2 = 42

for each track, after the track label (“TRACK 1”, “TRACK 2”, etc. . .), the first line lists the turnpoints;
the first | sign separates the initial turnpoints, which are not included in the threshold estimate, from the
final turnpoints. The second line after the track label shows the threshold estimate (turnpointMean) which
is obtained by averaging the final turnpoints, and the standard deviation of the turnpoints. The final line
lists the number of times each button was pressed by the listener. The results above were collected using
an arithmetic procedure. When the results are obtained with a geometric procedure the second line of the
results section labels the threshold estimate as geometric turnpointMean, and the threshold and standard
deviation values are computed as geometric mean, and geometric standard deviation, respectively.

6.3. Result Files by Paradigm 45

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down Inter-
leaved)

A snippet from the he results section of a plain-text trial-summary file for a transformed up-down interleaved
paradigm is shown below:

-200.0; TRACK 1; 1;
-200.0; TRACK 2; 1;
-200.0; TRACK 1; 1;
-200.0; TRACK 2; 1;

for each trial, the first column shows the value of the adaptive difference (e.g. the level of the signal in a
signal detection task), the second column shows the track number, and the third column indicates whether
the response was correct (1), or incorrect (0)

Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-Down Inter-
leaved)

The results section of a plain-text session-summary file for a transformed up-down interleaved paradigm is
shown below:

TRACK 1:
-205.25
-228.33

Mean = -216.79
SE = 11.54

TRACK 2:
-226.83
-214.14

Mean = -220.49
SE = 6.35

for each track, first a list of the threshold estimates obtained in each block is printed. Then the geometric or
arithmetic (depending on the procedure) mean and standard deviation are shown.

46 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

6.3.3 UML and PSI Result Files

Tabular Block-Summary Result Files (UML and PSI)

The UML and PSI tabular block-summary result files have three paradigm-specific columns:

• threshold the estimate of the threshold, or the midpoint of the psychometric function

• slope the estimate of the slope of the psychometric function

• lapse the estimate of the lapse rate, which determines the upper asymptote of the psychometric function

Tabular Trial-Summary Result Files (UML and PSI)

The UML and PSI tabular block-summary result files have two paradigm-specific columns:

• adaptive_difference the value at each trial of the parameter that is adaptively varied to find the psy-
chometric function

• response the response of the listener, 1 if s/he chose the correct interval, 0 otherwise

Tabular Session-Summary Result Files (UML and PSI)

Not currently implemented. Probably this will be never implemented because it makes more sense to obtain
session estimates by fitting psychometric functions to the responses across all the session than to average the
estimates from the tabular block-summary result files.

Plain-Text Block-Summary Result Files (UML and PSI)

The results section of a UML procedure is shown below (the structure for the PSI procedure is the same):

Midpoint = 0.046
Slope = 1.299
Lapse = 0.061

B1 = 51, B2 = 49

the first line shows the estimated midpoint of the psychometric function (the threshold), the second line
shows the estimated slope of the psychometric function, and the third line shows the estimated lapse rate
which determines the upper asymptote of the psychometric function.

6.3. Result Files by Paradigm 47

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (UML and PSI)

The result section of the UML and PSI tabular trial-summary files has two paradigm-specific columns. The
first column shows the value of the adaptive difference (the parameter that is adaptively varied to find the
psychometric function) for each trial. The second column shows the response (1 for correct, 0 otherwise)
given by the listener on each trial.

Plain-Text Session-Summary Result Files (UML and PSI)

Not currently implemented. Probably this will be never implemented because it makes more sense to obtain
session estimates by fitting psychometric functions to the responses across all the session than to average the
estimates from the plain-text block-summary result files.

6.3.4 PEST Result Files

Tabular Block-Summary Result Files (PEST)

The PEST tabular block-summary result files have a single paradigm specific column:

• threshold_arithmetic or threshold_geometric the threshold estimate. Whether the column is la-
belled “threshold_arithmetic”, or “threshold_geometric” depends on whether an arithmetic, or a geo-
metric procedure was used to vary the adaptive difference (the variable that is being varied adaptively
to find its threshold).

Tabular Trial-Summary Result Files (PEST)

Not currently implemented.

Tabular Session-Summary Result Files (PEST)

The PEST tabular session-summary result files have two paradigm specific columns:

• threshold_arithmetic or threshold_geometric the threshold estimated by averaging across trial
blocks. Whether the column is labelled “threshold_arithmetic”, or “threshold_geometric” depends on
whether an arithmetic, or a geometric procedure was used to vary the adaptive difference (the variable
that is being varied adaptively to find its threshold). For “threshold_arithmetic” the threshold estimate
is obtained by the arithmetic mean of the threshold estimates in each block. For “threshold_geometric”
the threshold estimate is obtained by the geometric mean of the threshold estimates in each block.

• SE the standard error of the mean threshold obtained by averaging across blocks. For “thresh-
old_arithmetic” the standard error is obtained by the arithmetic standard error of the threshold es-
timates in each block. For “threshold_geometric” the standard error is obtained by the geometric
standard error of the threshold estimates in each block.

48 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Block-Summary Result Files (PEST)

The result section of a plain-text block-summary result file obtained with the PEST paradigm is shown below:

Threshold = 0.62
B1 = 179, B2 = 160

the first line shows the threshold estimate. The second line shows how many times the listener pressed each
button. This may be useful to detect any biases in the choice of interval.

Plain-Text Trial-Summary Result Files (PEST)

A snippet from a plain-text trial-summary result file obtained with the PEST paradigm is shown below:

50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
50.0; 1;
45.0; 1;
40.0; 1;
30.0; 1;
30.0; 1;
30.0; 1;

the first column shows the value of the adaptive difference that was tested in each trial. The second column
indicates whether the listener’s response was correct or not (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (PEST)

The result section of a plain-text session-summary result file obtained with the PEST paradigm is shown
below:

0.62
-0.62

Mean = 0.00
SE = 0.62

the section starts with a listing of the threshold estimates obtained in each block. After this listing the mean
and standard error (arithmetic, or geometric, depending on the procedure used) of these threshold estimates
are shown.

6.3. Result Files by Paradigm 49

pychoacoustics Documentation, Release 0.6.8

6.3.5 Constant m-Intervals n-Alternatives Result Files

Tabular Block-Summary Result Files (Constant m-Intervals n-Alternatives)

The constant m-intervals n-alternatives tabular block-summary result files have four paradigm-specific
columns:

• dprime the d’ value

• perc_corr the percentage of correct response

• n_corr the number of correct responses

• n_trials the total number of trials

Tabular Trial-Summary Result Files (Constant m-Intervals n-Alternatives)

Not currently available

Tabular Session-Summary Result Files (Constant m-Intervals n-Alternatives)

The constant m-intervals n-alternatives tabular session-summary result files have four paradigm-specific
columns:

• dprime the d’ value

• perc_corr the percentage of correct response

• n_corr the number of correct responses

• n_trials the total number of trials

Plain-Text Block-Summary Result Files (Constant m-Intervals n-Alternatives)

The result section of a plain-text block-summary result file obtained with a constant m-intervals n-alternatives
procedure is shown below:

No. Correct = 37
No. Total = 50
Percent Correct = 0.74
d-prime = 0.910

the first row shows the number of correct responses, the second row shows the total number of trials, the third
row shows the percentage of correct responses, while the last row shows the d’ value.

50 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (Constant m-Intervals n-Alternatives)

A snippet from a plain-text trial-summary result file obtained with a constant m-intervals n-alternatives pro-
cedure is shown below:

1;
1;
0;
0;
1;

the first and only column shows the response of the listenr (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Constant m-Intervals n-Alternatives)

d-prime Block 1 = 0.910
d-prime Block 2 = 0.742

No. Correct = 72
No. Total = 100
Percent Correct = 72.00
d-prime = 0.824

6.3.6 Multiple Constants m-Intervals n-Alternatives Result Files

Tabular Block-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)

The multiple constants m-intervals n-alternatives tabular block-summary result files have four paradigm-
specific columns:

• dprime_subcX the d’ value for sub-condition X

• perc_corr_subcX the percentage of correct response for sub-condition X

• n_corr_subcX the number of correct responses for sub-condition X

• n_trials_subcX the total number of trials for sub-condition X

Tabular Trial-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)

Not currently implemented.

6.3. Result Files by Paradigm 51

pychoacoustics Documentation, Release 0.6.8

Tabular Session-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)

The multiple constants m-intervals n-alternatives tabular session-summary result files have the following
paradigm-specific columns:

• dprime_ALL the d’ value across sub-conditions

• perc_corr_ALL the percentage of correct response across sub-conditions

• n_corr_ALL the number of correct responses across sub-conditions

• n_trials_ALL the total number of trials across sub-conditions

then for each sub-condition:

• dprime_subcX the d’ value for sub-condition X

• perc_corr_subcX the percentage of correct response for sub-condition X

• n_corr_subcX the number of correct responses for sub-condition X

• n_trials_subcX the total number of trials for sub-condition X

Plain-Text Block-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)

The result section of a plain-text block-summary result file obtained with a multiple constants m-intervals
n-alternatives procedure is shown below:

CONDITION, 1; 1000.0
No. Correct = 17
No. Total = 25
Percent Correct = 68.00
d-prime = 0.661

CONDITION, 2; 2000.0
No. Correct = 19
No. Total = 25
Percent Correct = 76.00
d-prime = 0.999

CONDITION, ALL
No. Correct = 36
No. Total = 50
Percent Correct = 72.00
d-prime = 0.824

first, for each condition, after a line with the sub-condition number and condition label, the number of correct
responses, the number of total trials, the percent of correct responses, and d’ are show in successive lines.
Then the same information is shown for the data pooled across sub-conditions.

52 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)

A snippet from a plain-text trial-summary result file obtained with a multiple constants m-intervals n-
alternatives procedure is shown below:

1000.0; 1;
1000.0; 1;
2000.0; 1;
1000.0; 0;
1000.0; 1;
2000.0; 1;

the first column shows the sub-condition label for each trial, the second column shows the response of the
listener (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants m-Intervals n-Alternatives)

The result section of a plain-text session-summary result file obtained with a multiple constants m-intervals
n-alternatives procedure is shown below:

CONDITION 1; 1000.0
Percent Correct Block 1 = 68.00
Percent Correct Block 2 = 64.00

No. Correct = 33
No. Total = 50
Percent Correct = 66.00
d-prime = 0.583

CONDITION 2; 2000.0
Percent Correct Block 1 = 76.00
Percent Correct Block 2 = 72.00

No. Correct = 37
No. Total = 50
Percent Correct = 74.00
d-prime = 0.910

CONDITION ALL
Percent Correct Block 1 = 72.00
Percent Correct Block 2 = 68.00

No. Correct = 70
No. Total = 100
Percent Correct = 70.00
d-prime = 0.742

6.3. Result Files by Paradigm 53

pychoacoustics Documentation, Release 0.6.8

first, for each condition, a line with the sub-condition number and sub-condition label is shown, followed by
a list of the percentage of correct responses for that condition in each block. After these lines the number
of correct responses, the number of total trials, the percentage of correct responses, and d’ are show in
successive lines.

After these summaries for each sub-condition, the same summaries are shown for the data pooled across
sub-conditions (“CONDITION ALL”).

6.3.7 Constant 1-Intervals 2-Alternatives Result Files

Tabular Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)

The constant 1-interval 2-alternatives tabular block-summary result files have six paradigm-specific columns:

• dprime the d’ value

• nTotal the total number of trials

• nCorrectA the number of correct responses for A (signal present) trials

• nTotalA the total number of A (signal present) trials

• nCorrectB the number of correct responses for B (signal absent) trials

• nTotalB the total number of B (signal absent) trials

Tabular Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)

Not currently implemented.

Tabular Session-Summary Result Files (Constant 1-Intervals 2-Alternatives)

The constant 1-interval 2-alternatives tabular session-summary result files have six paradigm-specific
columns:

• dprime the d’ value

• nTotal the total number of trials

• nCorrectA the number of correct responses for A (signal present) trials

• nTotalA the total number of A (signal present) trials

• nCorrectB the number of correct responses for B (signal absent) trials

• nTotalB the total number of B (signal absent) trials

54 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)

The result section of a plain-text block-summary result file obtained with a constant 1-interval 2-alternatives
procedure is shown below:

No. Correct = 16
No. Total = 25
Percent Correct = 64.00
d-prime = 0.785

No. Correct Condition Yes = 8
No. Total Condition Yes = 11
Percent Correct Condition Yes = 72.73
No. Correct Condition No = 8
No. Total Condition No = 14
Percent Correct Condition No = 57.14

the first part shows the number of correct responses, number of total trials, the percentage of correct re-
sponses, and the d’ value. The second part shows the number of correct responses, the number of total trials,
and the percentage of correct responses separately for signal present (in this case “Yes”), and signal absent
(in this case “No”) trials. Please, note that “Yes”, and “No” are the names of the condition of the experiment
that was ran. In other experiments the names of the conditions will differ.

Plain-Text Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)

A snippet from a plain-text trial-summary result file obtained with a constant 1-interval 2-alternatives pro-
cedure is shown below:

Yes; 1;
Yes; 1;
Yes; 0;
Yes; 1;
Yes; 1;
No; 0;
No; 0;
No; 0;
No; 0;
No; 1;

the first column shows the name of the condition (in this case “Yes” for signal present, and “No” for signal
absent). The second column indicates whether the response of the listener was correct or not (1 for correct,
0 otherwise).

6.3. Result Files by Paradigm 55

pychoacoustics Documentation, Release 0.6.8

Plain-Text Session-Summary Files (Constant 1-Intervals 2-Alternatives)

The result section of a plain-text session-summary result file obtained with a constant 1-interval 2-alternatives
procedure is shown below:

d-prime Block 1 = 0.785
d-prime Block 2 = 0.097

No. Correct = 29
No. Total = 50
Percent Correct = 58.00
d-prime = 0.416

No. Correct A = 14
No. Total A = 23
Percent Correct A = 60.87
No. Correct B = 15
No. Total B = 27
Percent Correct B = 55.56

the section starts with a list of the d’ values obtained on each block of trials. The second paragraph shows the
number of correct responses, the total number of trials, the percentage of correct responses, and the d’ value.
The last paragraph shows the number of correct responses, the total number of trials, and the percentage of
correct responses separately for “A” (signal present), and “B” (signal absent) trials.

6.3.8 Multiple Constants 1-Intervals 2-Alternatives Result Files

Tabular Block-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)

The multiple constants 1-interval 2-alternatives tabular block-summary result files have the following
paradigm-specific columns:

• dprime_ALL the d’ value across all sub-conditions

• nTotal_ALL the total number of trials across all sub-conditions

• nCorrectA_ALL the number of correct responses for A (signal present) trials across all sub-conditions

• nTotalA_ALL the total number of A (signal present) trials across all sub-conditions

• nCorrectB_ALL the number of correct responses for B (signal absent) trials across all sub-conditions

• nTotalB_ALL the total number of B (signal absent) trials across all sub-conditions

then for each sub-condition:

• dprime_subcX the d’ value for sub-condition X

• nTotal_subcX the total number of trials for sub-condition X

• nCorrectA_subcX the number of correct responses for A (signal present) trials for sub-condition X

• nTotalA_subcX the total number of A (signal present) trials for sub-condition X

56 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

• nCorrectB_subcX the number of correct responses for B (signal absent) trials for sub-condition X

• nTotalB_subcX the total number of B (signal absent) trials for sub-condition X

Tabular Trial-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)

Not currently implemented.

Tabular Session-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)

The multiple constants 1-interval 2-alternatives tabular session-summary result files have the following
paradigm-specific columns:

• dprime_ALL the d’ value across all sub-conditions

• nTotal_ALL the total number of trials across all sub-conditions

• nCorrectA_ALL the number of correct responses for A (signal present) trials across all sub-conditions

• nTotalA_ALL the total number of A (signal present) trials across all sub-conditions

• nCorrectB_ALL the number of correct responses for B (signal absent) trials across all sub-conditions

• nTotalB_ALL the total number of B (signal absent) trials across all sub-conditions

then for each sub-condition:

• dprime_subcX the d’ value for sub-condition X

• nTotal_subcX the total number of trials for sub-condition X

• nCorrectA_subcX the number of correct responses for A (signal present) trials for sub-condition X

• nTotalA_subcX the total number of A (signal present) trials for sub-condition X

• nCorrectB_subcX the number of correct responses for B (signal absent) trials for sub-condition X

• nTotalB_subcX the total number of B (signal absent) trials for sub-condition X

Plain-Text Block-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)

The result section of a plain-text block-summary result file obtained with a multiple constants 1-interval
2-alternatives procedure is shown below:

CONDITION: 1; Center Frequency, 1000.0
No. Correct = 22
No. Total = 25
Percent Correct = 88.00
d-prime = 2.480

No. Correct Subcondition present = 13
No. Total Subcondition present = 16

(continues on next page)

6.3. Result Files by Paradigm 57

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

Percent Correct Subcondition present = 81.25
No. Correct Subcondition absent = 9
No. Total Subcondition absent = 9
Percent Correct Subcondition absent = 100.00

CONDITION: 2; Center Frequency, 1001.0
No. Correct = 20
No. Total = 25
Percent Correct = 80.00
d-prime = 1.695

No. Correct Subcondition present = 9
No. Total Subcondition present = 12
Percent Correct Subcondition present = 75.00
No. Correct Subcondition absent = 11
No. Total Subcondition absent = 13
Percent Correct Subcondition absent = 84.62

CONDITION: ALL
No. Correct = 42
No Total = 50
Percent Correct = 84.00
d-prime = 2.127

No. Correct Subcondition present = 22
No. Total Subcondition present = 28
Percent Correct Subcondition present = 78.57
No. Correct Subcondition absent = 20
No. Total Subcondition absent = 22
Percent Correct Subcondition absent = 90.91

there are three parts, one containing summaries for each sub-condition, and one containing summaries for
the data pooled across all sub-conditions (“CONDITION: ALL”). The parts containing summaries for each
sub-condition start with the sub-condition number, and sub-condition label (this will vary from experiment to
experiment). Following this, the total number of correct responses, the total number of trials, the percentage
of correct responses, and the d’ value for the subcondition are shown. Then the number of correct responses,
the number of total responses, and the percentage of correct responses are shown for each sub-sub-condition
within a sub-condition. This same information is then shown for the data pooled across all sub-condition.

58 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)

A snippet from a plain-text trial-summary result file obtained with a multiple constants 1-interval 2-
alternatives procedure is shown below:

Center Frequency, 1001.0; present; 0;
Center Frequency, 1000.0; absent; 1;
Center Frequency, 1001.0; absent; 1;
Center Frequency, 1000.0; present; 1;

the first column shows the subcondition label. The second column shows the sub-sub-condition label (trial
type). The third column indicates whether the listener’s response was correct or not (1 for a correct response,
0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants 1-Intervals 2-Alternatives)

The result section of a plain-text session-summary result file obtained with a multiple constants 1-interval
2-alternatives procedure is shown below:

CONDITION: 1; Center Frequency, 1000.0
d-prime Block 1 = 2.480
d-prime Block 2 = 2.108

No. Correct = 43
No. Total = 50
Percent Correct = 86.00
d-prime = 2.480

No. Correct A = 26
No. Total A = 32
Percent Correct A = 81.25
No. Correct B = 17
No. Total B = 18
Percent Correct B = 94.44

CONDITION: 2; Center Frequency, 1001.0
d-prime Block 1 = 1.695
d-prime Block 2 = 1.177

No. Correct = 38
No. Total = 50
Percent Correct = 76.00
d-prime = 1.411

No. Correct A = 18
No. Total A = 24

(continues on next page)

6.3. Result Files by Paradigm 59

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

Percent Correct A = 75.00
No. Correct B = 20
No. Total B = 26
Percent Correct B = 76.92

CONDITION: ALL
d-prime Block 1 = 2.127
d-prime Block 2 = 1.539

No. Correct = 81
No. Total = 100
Percent Correct = 81.00
d-prime = 1.790

No. Correct A = 44
No. Total A = 56
Percent Correct A = 78.57
No. Correct B = 37
No. Total B = 44
Percent Correct B = 84.09

there are three parts, one containing summaries for each sub-condition, and one containing summaries for the
data pooled across all sub-conditions. The parts containing summaries for each sub-condition start with a line
showing the sub-condition number, and sub-condition label (this will vary from experiment to experiment).
Following this there is a listing of d’ values obtain in each block for that subcondition. The next lines show
the total number of correct responses, the total number of trials, the percentage of correct responses, and the
d’ value for the given sub-condition. Then, the number of correct responses, the number of trials, and the
percentage of correct responses are shown for each trial type (“A” for signal present, “B” for signal absent)
within a sub-condition. This same information is then shown for the data pooled across all sub-condition.

6.3.9 Constant 1-Pair Same/Different Result Files

Tabular Block-Summary Result Files (Constant 1-Pair Same/Different)

The constant 1-pair same/different tabular block-summary result files have seven paradigm-specific columns:

• dprime_IO the estimated d’ for a listener using the independent observations strategy

• dprime_diff the estimated d’ for a listener using the differencing strategy

• nTotal the total number of trials

• nCorrect_same the number of correct response for “same” trials

• nTotal_same the total number of “same” trials

• nCorrect_different the number of correct response for “different” trials

60 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

• nTotal_different the total number of “different” trials

Tabular Session-Summary Result Files (Constant 1-Pair Same/Different)

The constant 1-pair same/different tabular session-summary result files have seven paradigm-specific
columns:

• dprime_IO the estimated d’ for a listener using the independent observations strategy

• dprime_diff the estimated d’ for a listener using the differencing strategy

• nTotal the total number of trials

• nCorrect_same the number of correct response for “same” trials

• nTotal_same the total number of “same” trials

• nCorrect_different the number of correct response for “different” trials

• nTotal_different the total number of “different” trials

Plain-Text Block-Summary Result Files (Constant 1-Pair Same/Different)

The results section for a constant 1-pair same/different is shown below:

No. Correct = 7
No. Total = 10
Percent Correct = 70.00
d-prime IO = 1.860
d-prime diff = 2.223

No. Correct Condition same = 4
No. Total Condition same = 6
Percent Correct Condition same= 66.67
No. Correct Condition different = 3
No. Total Condition different = 4
Percent Correct Condition different= 75.00

the first line shows the total number of correct responses. The second line shows the total number of trials.
The third line shows the percentage of correct responses. The fourth line shows the estimated d’ for a listener
using the independent observations strategy. The fifth line shows the estimated d’ for a listener using the
differencing strategy. The following lines show the number of correct responses, the total number of trials,
and the percentage of correct responses, separately for “same”, and “different” trials.

6.3. Result Files by Paradigm 61

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (Constant 1-Pair Same/Different)

A snippet from the result section of a 1-pair same/different file is shown below:

same; 0;
same; 0;
different; 0;
same; 1;
different; 1;

the first column indicates whether the trial was a “same”, or “different” trial. The second column shows the
response (1 for correct, 0 otherwise) given by the listener on each trial.

Plain-Text Session-Summary Files (Constant 1-Pair Same/Different)

The result section for a 1-pair same/different paradigm session is shown below:

d-prime IO Block 1 = 2.430
d-prime diff Block 1 = 2.923
d-prime IO Block 2 = 1.955
d-prime diff Block 2 = 2.406

No. Correct = 46
No. Total = 60
Percent Correct = 76.67
d-prime IO = 2.250
d-prime diff = 2.726

No. Correct A = 24
No. Total A = 33
Percent Correct A = 72.73
No. Correct B = 22
No. Total B = 27
Percent Correct B = 81.48

the first paragraph is a listing of the d’ values calculated according to the independent observations and dif-
ferencing strategy for each block of trials in the session. The secon paragraph lists the number of correct
responses, total number of trials, percent correct, and d’ values (for both independent observation and dif-
ferencing strategy) across all the blocks of trials in the session. The last paragraph shows summary statistics
for “same”, and “different” trials separately (“A” refers to “same” trials, and “B” refers to “different” trials.

62 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

6.3.10 Multiple Constants 1-Pair Same-Different Result Files

Tabular Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)

The multiple constants 1-pair same/different tabular block-summary result files have seven paradigm-specific
columns for each pair of stimuli that are tested:

• dprime_IO_pairX the estimated d’ for a listener using the independent observations strategy for the
stimulus pair number X

• dprime_diff_pairX the estimated d’ for a listener using the differencing strategy for the stimulus pair
number X

• nTotal_pairX the total number of trials for the stimulus pair number X

• nCorrect_same_pairX the number of correct response for “same” trials for the stimulus pair number
X

• nTotal_same_pairX the total number of “same” trials for the stimulus pair number X

• nCorrect_different_pairX the number of correct response for “different” trials for the stimulus pair
number X

• nTotal_different_pairX the total number of “different” trials for the stimulus pair number X

Tabular Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)

The multiple constants 1-pair same/different tabular trial-summary result files have six paradigm-specific
columns:

• pair the stimulus pair tested in the given trial

• stim1 the label of the stimulus that was presented in the first interval

• stim2 the label of the stimulus that was presented in the second
interval

• case whether the trial was a “same” or a “different” trial

• response 1 for a correct response, 0 otherwise

Tabular Session-Summary Result Files (Multiple Constants 1-Pair Same-Different)

The multiple constants 1-pair same/different tabular session-summary result files have seven paradigm-
specific columns for each pair of stimuli that are tested:

• dprime_IO_pairX the estimated d’ for a listener using the independent observations strategy for the
stimulus pair number X

• dprime_diff_pairX the estimated d’ for a listener using the differencing strategy for the stimulus pair
number X

• nTotal_pairX the total number of trials for the stimulus pair number X

6.3. Result Files by Paradigm 63

pychoacoustics Documentation, Release 0.6.8

• nCorrect_same_pairX the number of correct response for “same” trials for the stimulus pair number
X

• nTotal_same_pairX the total number of “same” trials for the stimulus pair number X

• nCorrect_different_pairX the number of correct response for “different” trials for the stimulus pair
number X

• nTotal_different_pairX the total number of “different” trials for the stimulus pair number X

Plain-Text Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)

The result section of a plain-text block-summary file obtained with the multiple constants 1-pair
same/different paradigm is shown below:

DIFFERENCE: Pair1
No. Correct = 21
No. Total = 25
Percent Correct = 84.00
d-prime IO = 2.698
d-prime diff = 3.397

No. Correct Condition same = 12
No. Total Condition same = 14
Percent Correct Condition same = 85.71
No. Correct Condition different = 9
No. Total Condition different = 11
Percent Correct Condition different = 81.82

DIFFERENCE: Pair2
No. Correct = 19
No. Total = 25
Percent Correct = 76.00
d-prime IO = 2.216
d-prime diff = 2.756

No. Correct Condition same = 8
No. Total Condition same = 10
Percent Correct Condition same = 80.00
No. Correct Condition different = 11
No. Total Condition different = 15
Percent Correct Condition different = 73.33

the result section is composed of two parts for each pair of stimuli tested. The first part lists first the pair
number, and then gives summary statistics for that pair (number of correct responses, total number of trials,
percent correct, d’ for the independent observations strategy, d’ for the differencing strategy). The second
part gives summary statistics separately for “same” and “different” trials.

64 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)

A snippet from a plain-text trial-summary result file for the multiple constants 1-pair same/different paradigm
is shown below:

Pair2_WAV2-WAV1_different; 0;
Pair1_WAV2-WAV1_different; 1;
Pair2_WAV1-WAV2_different; 1;
Pair1_WAV2-WAV2_same; 0;
Pair2_WAV1-WAV2_different; 1;
Pair2_WAV2-WAV1_different; 1;
Pair1_WAV2-WAV2_same; 1;

the first column tells the stimulus pair that was tested in each trial, as well as the sequence of stimuli that was
played, and whether the trial was a “same”, or a “different” trial. The second column shows the response (1
for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants 1-Pair Same-Different)

Not currently implemented.

6.3.11 Multiple Constants ABX Result Files

Tabular Block-Summary Result Files (Multiple Constants ABX)

The multiple constants ABX tabular block-summary result files have seven paradigm-specific columns for
each pair of stimuli that are tested:

• dprime_IO_pairZ the estimated d’ for a listener using the independent observations strategy for the
stimulus pair number Z

• dprime_diff_pairZ the estimated d’ for a listener using the differencing strategy for the stimulus pair
number Z

• nTotal_pairZ the total number of trials for the stimulus pair number Z

• nCorrect_A_pairZ the number of correct response for “A” trials for the stimulus pair number Z

• nTotal_A_pairZ the total number of “A” trials for the stimulus pair number Z

• nCorrect_B_pairZ the number of correct response for “B” trials for the stimulus pair number Z

• nTotal_B_pairZ the total number of “B” trials for the stimulus pair number Z

6.3. Result Files by Paradigm 65

pychoacoustics Documentation, Release 0.6.8

Tabular Trial-Summary Result Files (Multiple Constants ABX)

The multiple constants ABX tabular trial-summary result files have six paradigm-specific columns:

• pair the stimulus pair tested in the given trial

• A the label of the stimulus that was presented in interval A

• B the label of the stimulus that was presented in interval B

• X the label of the stimulus that was presented in interval X

• case whether the X stimulus is the same as the one presented in interval A or B

• response 1 for a correct response, 0 otherwise

Tabular Session-Summary Result Files (Multiple Constants ABX)

The multiple constants ABX tabular session-summary result files have seven paradigm-specific columns for
each pair of stimuli that are tested:

• dprime_IO_pairZ the estimated d’ for a listener using the independent observations strategy for the
stimulus pair number Z

• dprime_diff_pairZ the estimated d’ for a listener using the differencing strategy for the stimulus pair
number Z

• nTotal_pairZ the total number of trials for the stimulus pair number Z

• nCorrect_A_pairZ the number of correct response for “A” trials for the stimulus pair number Z

• nTotal_A_pairZ the total number of “A” trials for the stimulus pair number Z

• nCorrect_B_pairZ the number of correct response for “B” trials for the stimulus pair number Z

• nTotal_B_pairZ the total number of “B” trials for the stimulus pair number Z

Plain-Text Block-Summary Result Files (Multiple Constants ABX)

The result section of a plain-text block-summary file for the multiple constants ABX paradigm is shown
below:

DIFFERENCE: Pair1
No. Correct = 17
No. Total = 25
Percent Correct = 68.00
d-prime IO = 1.313
d-prime diff = 1.468

No. Correct Condition A = 12
No. Total Condition A = 16
Percent Correct Condition A = 75.00

(continues on next page)

66 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

No. Correct Condition B = 5
No. Total Condition B = 9
Percent Correct Condition B = 55.56

the result section is composed of two parts for each pair of stimuli tested. The first part lists first the pair
number, and then gives summary statistics for that pair (number of correct responses, total number of trials,
percent correct, d’ for the independent observations strategy, d’ for the differencing strategy). The second
part gives summary statistics separately for trials in which stimulus X was presented in interval A and for
trials in which it was presented in interval B.

Plain-Text Trial-Summary Result Files (Multiple Constants ABX)

A snippet from a plain-text trial-summary result file for the multiple constants ABX paradigm is shown
below:

Pair2_WAV1-WAV2_WAV1_A; 1;
Pair2_WAV1-WAV2_WAV1_A; 0;
Pair2_WAV2-WAV1_WAV2_A; 1;
Pair2_WAV1-WAV2_WAV2_B; 0;
Pair2_WAV1-WAV2_WAV2_B; 1;
Pair1_WAV2-WAV1_WAV2_A; 1;
Pair2_WAV1-WAV2_WAV2_B; 1;

the first column tells the stimulus pair that was tested in each trial, as well as the sequence of stimuli that was
played, and whether stimulus X was presented in interval A or in interval B. The second column shows the
response (1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants ABX)

Not currently implemented.

6.3.12 Multiple Constants Odd One Out Result Files

Tabular Block-Summary Result Files (Multiple Constants Odd One Out)

The multiple constants odd one out tabular block-summary result files have five paradigm-specific columns
for each subcondition tested:

• nCorr_subcndX the number of correct response in subcondition X

• nTrials_subcndX the number of trials in subcondition X

• percCorr_subcndX the percentage of correct responses in subcondition X

• dprime_IO_subcndX the estimated d’ in subcondition X for a listener using the independent obser-
vations strategy

6.3. Result Files by Paradigm 67

pychoacoustics Documentation, Release 0.6.8

• dprime_diff_subcndX the estimated d’ in subcondition X for a listener using the differencing strategy

Tabular Trial-Summary Result Files (Multiple Constants Odd One Out)

The multiple constants odd one out tabular trial-summary result files have two paradigm-specific columns:

• subcondition the subcondition tested in each trial

• response 1 for a correct response, 0 otherwise

Tabular Session-Summary Result Files (Multiple Constants Odd One Out)

The multiple constants odd one out tabular session-summary result files have five paradigm-specific columns
for each subcondition tested:

• nCorr_subcndX the number of correct response in subcondition X

• nTrials_subcndX the number of trials in subcondition X

• percCorr_subcndX the percentage of correct responses in subcondition X

• dprime_IO_subcndX the estimated d’ in subcondition X for a listener using the independent obser-
vations strategy

• dprime_diff_subcndX the estimated d’ in subcondition X for a listener using the differencing strategy

Plain-Text Block-Summary Result Files (Multiple Constants Odd One Out)

The result section of a plain-text block-summary file for the multiple constants odd one out paradigm is shown
below:

Condition Comparison1

No. Correct = 9
No. Trials = 10
Percent Correct = 90.000
d-prime IO = 3.324
d-prime diff = 4.028

Condition Comparison2

No. Correct = 7
No. Trials = 10
Percent Correct = 70.000
d-prime IO = 2.101
d-prime diff = 2.504

(continues on next page)

68 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

B1 = 7, B2 = 7, B3 = 6

for each subcondition, after the subcondition label, the following values are listed on successive lines: the
number of correct trials, the number of trials, the percentage of correct responses, the d’ value for a listener
using the independent observations strategy, and the d’ value for a listener using the differencing strategy.

The final line shows the number of times each button was pressed by the listener.

Plain-Text Trial-Summary Result Files (Multiple Constants Odd One Out)

A snippet from a plain-text trial-summary result file for the multiple constants odd one out paradigm is shown
below:

Comparison2; 0;
Comparison2; 1;
Comparison1; 1;
Comparison1; 1;
Comparison1; 1;
Comparison1; 0;

the first column shows the label of the subcondition tested on each trial, the second column shows the response
(1 for correct, 0 otherwise).

Plain-Text Session-Summary Files (Multiple Constants Odd One Out)

Not currently implemented.

6.3.13 Multiple Constants Sound Comparison Result Files

Tabular Block-Summary Result Files (Multiple Constants Sound Comparison)

The multiple constants odd one out tabular block-summary result files have the following paradigm-specific
columns:

• nTrials the total number of trials per subcondition

then, for each condition:

• stim1_count_subcndX the number of times stimulus 1 was chosen as the odd one in subcondition X

• stim1_percent_subcndX the percent of times stimulus 1 was chosen as the odd one in subcondition
X

• stim2_count_subcndX the number of times stimulus 3 was chosen as the odd one in subcondition X

• stim2_percent_subcndX the percent of times stimulus 2 was chosen as the odd one in subcondition
X

6.3. Result Files by Paradigm 69

pychoacoustics Documentation, Release 0.6.8

• stim3_count_subcndX the number of times stimulus 3 was chosen as the odd one in subcondition X

• stim3_percent_subcndX the percent of times stimulus 3 was chosen as the odd one in subcondition
X

Tabular Trial-Summary Result Files (Multiple Constants Sound Comparison)

Not currently implemented.

Tabular Session-Summary Result Files (Multiple Constants Sound Comparison)

Not currently implemented.

Plain-Text Block-Summary Result Files (Multiple Constants Sound Comparison)

The result section of an odd-one-out plain-text block-summary result file is shown below:

Condition Comparison1
Stimulus 1 = 8/25; Percent = 32.00
Stimulus 2 = 7/25; Percent = 28.00
Stimulus 3 = 10/25; Percent = 40.00

Condition Comparison2
Stimulus 1 = 10/25; Percent = 40.00
Stimulus 2 = 6/25; Percent = 24.00
Stimulus 3 = 9/25; Percent = 36.00

B1 = 5, B2 = 40, B3 = 5

for each condition tested in a block of trials the result section lists the name of the condition, and for each
stimulus, the number of times it was chosen as the odd one out of the total number of trials, and the percentage
of times it was chosen as the odd one.

The last line in the code snippet above shows the number of times each button was pressed.

Plain-Text Trial-Summary Result Files (Multiple Constants Sound Comparison)

A snippet from the result section of an odd-one-out plain-text trial-summary result file is shown below:

Comparison2; 1;
Comparison1; 2;
Comparison1; 3;

the first column shows the condition tested on each trial. The second column shows the alternative chosen.

70 Chapter 6. Result Files

pychoacoustics Documentation, Release 0.6.8

Plain-Text Session-Summary Files (Multiple Constants Sound Comparison)

Not currently implemented.

6.4 Log Results Files

pychoacoustics automatically saves backup copies of the “block summary” and “trial-summary” files in
a backup folder. On Linux systems this folder is located in

~/.local/share/data/pychoacoustics/data_backup

on Windows systems it is located in

C:\\Users\username\.local\share\data\pychoacoustics\data_backup

where username is your account login name. A separate file is saved for each block of trials that is run.
These files are named according to the date and time at which the blocks were started (the naming follows
the YY-MM-DD-HH-MM-SS scheme). Unlike other results files, that are written only once a block of trials
has been completed, these log results files get written as soon as information is available (e.g., a new line in
the “trial-summary” results file is written at the end of each trial).

6.4. Log Results Files 71

pychoacoustics Documentation, Release 0.6.8

72 Chapter 6. Result Files

CHAPTER

SEVEN

DEFAULT EXPERIMENTS

7.1 Audiogram

7.2 Demo Audiogram Multiple Frequencies

7.3 Demo Frequency Discrimination

7.4 Demo Signal Detection

7.5 Dummy Adaptive

7.6 F0DL

7.7 Level Discrimination

7.8 WAV ABX

7.9 WAV Comparison

7.10 WAV Same/Different

73

pychoacoustics Documentation, Release 0.6.8

74 Chapter 7. Default Experiments

CHAPTER

EIGHT

THE PYCHOACOUSTICS ENGINE

8.1 Sound Output

8.1.1 Sound Output on Linux

On Linux systems pychoacoustics can either output sound (numpy arrays) directly to the soundcard, or
write a WAV file for each sound and call an external command to play it. Currently, sending sounds directly
to the soundcard is possible only through the pyaudio or through the alsaaudio (optional dependency, Linux
only) Python modules. If these modules are installed, they will be detected automatically and you will be able
to select one of them as the “Play Command” in the sound preferences dialog. When you select alsaaudio
as the play command, if you have multiple soundcards, you can select the device to which the sound will be
sent. There will be also an option to set the size of the buffer that alsaaudio uses to play sounds. If the
buffer is not filled completely by a sound (buffer size greater than number of samples in the sound), it will
be zero padded. This may lead to some latency between the offset of a sound and the onset of the following
one. If you set a value smaller than one the buffer size will be automatically set to the number of samples in
the sound that is being played.

Using an external command to play sounds generally works very well and is fast on modern hardware.
pychoacoustics tries to detect available play commands on your system each time it starts up. On Linux
systems, the recommended play command is aplay, which is installed by default on most Linux distribu-
tions. aplay supports 24-bit output on 24-bit soundcards with appropriate Linux drivers. Other possible
play commands are play, which is provided by sox and sndfile-play, which is provided by the libsndfile
tools. You can call another program by choosing “custom” in the “Play Command” drop-down menu and
spelling out the name of the command in the box below.

8.1.2 Sound Output on Windows

The command that pychoacoustics uses by default on Windows is winsound. This command supports
only 16-bit output. pychoacoustics can also use pyaudio to output sound on Windows. pyaudio can
use several Windows sound APIs, including MME, ASIO, and WASAPI. The MME API, is limited to 16-bit
output. ASIO and WASAPI on the other hand, can play sounds with full 24-bit resolution. Depending on
the source of your pyaudio installation (e.g. pip, conda, conda-forge) the WASAPI and ASIO APIs may or
may not be activated.

Other possible play commands on Windows are play, which is provided by sox and sndfile-play, which
is provided by the libsndfile tools. These programs need to be installed by the user. If they are in the system

75

http://people.csail.mit.edu/hubert/pyaudio/
http://pyalsaaudio.sourceforge.net/
http://sox.sourceforge.net/
http://www.mega-nerd.com/libsndfile/
http://sox.sourceforge.net/
http://www.mega-nerd.com/libsndfile/

pychoacoustics Documentation, Release 0.6.8

path, pychoacoustics will detect them automatically. Note that external media players with a graphical
user interface (like foobar2000) may not work well with pychoacoustics.

8.1.3 Sound Output on macOS

By default pychoacoustics uses the afplay command to output sound on macOS. If pyaudio is properly
installed and configured for the Python distribution used to run pychoacoustics it can also be used by
pychoacoustics to play sounds on macOS.

8.1.4 Sound Output on FreeBSD

The default command used by pychoacoustics to play sound on FreeBSD is wavplay. Several other
commands can be used to play sound on FreeBSD systems, see here.

8.2 Parameters Files

Parameters files are plain text files, that can be modified through pychoacoustics or through a text editor.
They contain a header with information that applies to all the experimental blocks stored in a parameters
file, and sections corresponding to the parameters that are specific to each experimental block store in a
parameters file. The header contains the following fields:

• Phones

• Shuffle Mode

• Response Mode

• Auto Resp. Mode Perc. Corr.

• Sample Rate

• Bits

• Trigger On/Off

• Experiment Label

• End Command

• Shuffling Scheme

• No. Repetitions

• Proc. Res.

• Proc. Res. Table

• Plot

• PDF Plot

76 Chapter 8. The pychoacoustics Engine

https://forums.freebsd.org/threads/59793/

pychoacoustics Documentation, Release 0.6.8

You can refer to Section General Widgets (left panel) to know what each of these fields represents.

The sections that contain the parameters for each experimental block are subdivided into fields that are sep-
arated by one or more dots. You should not change this formatting when modifying parameters files.

A fragment from a parameters file is shown below:

Paradigm: Adaptive
Intervals: 2 :False
Alternatives: 2 :False

each entry here has two or three elements separated by colons. The first element represents the variable of
interest, the second element its value, and the third element is a boolean value that determines whether the
inSummary checkbox will be checked or not (see Section Result Files for more info on this). You can have
one or more spaces between each element and the colon separator. Each entry has to be written on a single
line.

8.3 Block Presentation Position

We will define the serial position at which a block is presented during an experimental session as its “pre-
sentation position”, and the serial position at which a block is stored in a parameters file as its “storage
point”.

Clicking the “Shuffle” button randomises the presentation positions of the blocks, but leaves the order in
which the blocks are stored in a parameters file untouched. The “Previous” and “Next” buttons, as well as
the “Jump to Block” chooser let you navigate across the blocks storage points, while the “Previous Position”,
and the “Next Position” buttons, as well as the “Jump to Position” chooser let you navigate across the blocks
presentation positions.

The block presentation positions are recorded in the parameters files. This is useful in case you have to inter-
rupt an experimental session whose block presentation positions had been randomized, before it is finished,
and continue it at a later date. In this case you can save the parameters file, reload it next time, and let the
listener complete the experimental blocks that s/he had not run because of the interruption. Notice that each
time you load a parameters file pychoacoustics will automatically move to the first block presentation
position. Therefore, you will have to note down what was the last block that your listener had run in the
interrupted session (or find out by looking at the results file) and move to the presentation position of the
following block yourself.

By default clicking on the “Shuffle” button performs a simple full randomization of the block presentation
positions. However, you can specify more complex shuffling schemes in the “Shuffling Scheme” text field.
Let’s say you want to present two tasks in your experiment, a frequency discrimination and an intensity
discrimination task. Each task has four subconditions, (e.g. four different base frequencies for the frequency
discrimination task and four different base intensities for the intensity discrimination task). Your parameters
file will contain eight blocks in total, blocks one to four are for the frequency discrimination task and blocks
five to eight are for the intensity discrimination task. During the experiment you want your participants
to run first the four frequency discrimination conditions in random order, and afterwards the four intensity
discrimination conditions in random order. To achieve this you can enter the following shuffling scheme:

8.3. Block Presentation Position 77

pychoacoustics Documentation, Release 0.6.8

([1,2,3,4], [5,6,7,8])

basically you specify sequences (which can be nested) with your experimental blocks, sequences within
round parentheses () are not shuffled, while sequences within square brackets [] are shuffled. Following
the previous example, if you want to present first the four blocks of one of the tasks (either frequency or
intensity) in random order, and then the four blocks of the other task in random order, you would specify
your shuffling scheme as follows:

[[1,2,3,4], [5,6,7,8]]

on the other hand, if you want to present first the four blocks of one of the tasks (either frequency or intensity)
in sequential order and then the four blocks of the other task in sequential order, you would specify your
shuffling scheme as follows:

[(1,2,3,4), (5,6,7,8)]

you can have any variation you like on the theme, and the lists can be nested ad libitum, so for example you
could have:

[(1,2,[3,4]), (5,6,7,8)]

this would instruct pychoacoustics to present first either the four frequency conditions or the four intensity
conditions. The first two frequency conditions are presented sequentially, while the last two are shuffled. To
save typing you can give ranges rather than listing all blocks individually. For example:

([1-4], [5-8])

is equivalent to:

([1,2,3,4], [5,6,7,8])

8.4 Displaying Task Instructions

Although it is common to simply give task instructions verbally for psychophysics experiments, sometimes it
is useful to present task instructions on the computer screen while the listener is running a test. For example,
there may be cases in which you want to your participants to perform two different tasks within the same
session. You may want your participants to perform a frequency discrimination task with a pure tone for the
first two blocks of trials, and then run two blocks of an intensity discrimination task with the same stimulus.
In these cases it is necessary to present visually the task instructions on the computer screen either at the
beginning of each block, or only at the blocks where the task changes. pychoacoustics allows you to store
task instructions for each block of trials in the “Instructions” box on the left side of the control window. The
“Show Instructions At BP” box below allows you to set the block positions at which the instructions will be
shown. In the example above, in which the listener has to complete two blocks of the frequency discrimination
task first, and then complete two blocks of the intensity discrimination task, you could input`1,2,3,4` in the
“Show Instructions At BP” box to show task instructions at the beginning of each block. Alternatively, you
could input`1,3` in the “Show Instructions At BP” box to show task instructions only when a new task is

78 Chapter 8. The pychoacoustics Engine

pychoacoustics Documentation, Release 0.6.8

starting. You should keep in mind that the “Show Instructions At BP” box sets the block positions at which
the instructions will be shown. Depending on the shuffling scheme that you’re using these may be different
from the block storage points (see Block Presentation Position above for more info).

8.5 OS Commands

pychoacoustics can be instructed to run operating system (OS) commands at the end of an experiment.
This may be useful to run custom scripts that may analyse the result files, backup result files or perform other
operations.

In the control window, you can enter commands that you want to be executed at the end of a specific experi-
ment in the “End Command” box. This command will be saved in the parameters file of the experiment.

In the “Preferences Dialog”, under the “Notifications” tab you can instead set a command that will be exe-
cuted at the end of each experiment you run, or 𝑛 blocks before the end of each experiment you run. These
commands should be entered in the “Execute custom command” boxes.

The commands that you can execute are OS commands, therefore they are different on Linux and
Windows platforms. On Linux, for example, assuming that you store all your experimental results in
the directory “/home/foo/exp/”, you could automatically make a backup of these files in the directory
“/home/foo/backup/exp/” by using the command

$ rsync -r -t -v --progress -s /home/foo/exp/ /home/foo/backup/exp/

To make things more interesting, you can use some special strings to pass pychoacoustics internal vari-
ables to your commands. For example, if you want to copy the results file of the current experiment to the
directory “/home/foo/res/”, you can use the command

$ cp [resFile] /home/foo/backup/exp/

here the special string [resFile] will be converted to the name of the file where pychoacoustics has
saved the data. To make sure that the command executes without errors even if the name of the result file
contains white spaces you should put the variable referring to the filename between quotes:

$ cp "[resFile]" /home/foo/backup/exp/

A full listing of the internal pychoacoustics variables that can be called by special strings in your com-
mands is given in Table pychoacoustics variables

8.5. OS Commands 79

pychoacoustics Documentation, Release 0.6.8

Table 1: pychoacoustics variables

String Variable
[resDir] Results file directory
[resFile] Plain-text block-summary results file
[resFileTrial] Plain-text trial-summary results file
[resFileSess] Plain-text session-summary results file
[resTable] Tabular block-summary results file
[resTableTrials] Tabular trial-summary results file
[resTableSess] Tabular session-summary results file
[listener] Listener label
[experimenter] Experimenter ID
[pdfPlot] pdf plot file of the session summary

8.6 Preferences Settings

All the settings that can be manipulated in the “Preferences” dialog, as well as the “Phones” and “Experi-
menters” dialogs are stored in a file in the user home directory. On Linux this file is located in:

~/.config/pychoacoustics/preferences.py

On Windows, assuming the root drive is “C” it is located in:

C:\\Users\username\.config/pychoacoustics\preferences.py

where username is your Windows login username. Although I strive to avoid this, the way in which the
preferences settings are stored may change in newer versions of pychoacoustics. This means that when
pychoacoustics is upgraded to a newer version it may sometimes not start or throw out errors. To address
these issues, please, try removing the old preferences file. Of course this means that you’re going to lose all
the settings that you had previously saved. To avoid loosing any precious information, such as the calibration
values of your headphones, write down all important info before removing the preferences file.

8.7 Response Mode

pychoacoustics was designed to run interactive experiments in which a listener hears some stimuli and
gives a response through a button or key press. This is the default mode, called “Real Listener” mode.
pychoacoustics provides two additional response modes, “Automatic” and “Simulated Listener”. These
modes can be set through the control window.

In “Automatic” response mode, rather than waiting for the listener to give a response, pychoacoustics
gives itself a response and proceeds to the next trial. The probability that this automatic response is correct
can also be set through the control window. The “Automatic” response mode has two main functions. The
first is testing and debugging an experiment. Rather than running the experiment yourself, you can launch
pychoacoustics in “Automatic” response mode and check that everything runs smoothly, the program
doesn’t crash, and the result files are saved correctly. The second function of the automatic response mode is

80 Chapter 8. The pychoacoustics Engine

pychoacoustics Documentation, Release 0.6.8

to allow passive presentation of the stimuli. Some neuroimaging experiments (e.g. electroencephalographic
or functional magnetic resonance recordings) are performed with listeners passively listening to the stimuli.
These experiments usually also require that the program presenting the stimuli sends triggers to the recording
equipment to flag the start of a trial. Potentially this can also be done in pychoacoustics (and we’ve done
it in our lab for electroencephalographic recordings), but at the moment this functionality is not implemented
in a general way in the program.

The “Simulated Listener” mode is simply a hook that allows you to redirect the control flow of the program to
some code that simulates a listener and provides a response. Notice that pychoacoustics does not provide
any simulation code in itself, the simulation code has to be written by you for a specific experiment. If
no simulation code is written in the experiment file, pychoacoustics will do nothing in simulated listenr
mode. Further details on how to use the “Simulated Listener” mode are provided in Section Simulations.

Both the “Automatic” and the “Simulated Listener” make recursive function calls. In Python the number of
recursive function calls that you can make is limited. If your experiment passes this limit pychoacoustics
will crash. The limit can be raised, up to a certain extent (which is dependent on your operating system, see
the documentation for the setrecursionlimit function in the Python sys module) through the “Max Recursion
Depth” setting that you can find in the preferences window, or set through a command line option when
running pychoacoustics from the command line. Notice that the total number of recursive calls that your
program will make to complete an experiments will be higher than the number of trials in the experiment,
so you should set the “Max Recursion Depth” to a value higher than the number of trials you’re planning to
perform (how much higher I don’t know, you should find out by trial and error, a few hundred points higher
is usually sufficient). If you’re planning to run a very high number of trials in “Automatic” or “Simulated
Listener” mode, rather than raising the max recursion depth, it may be better to split the experiment in several
parts. You can always write a script that automatically launches pychoacoustics from the command line
instructing it to load a given parameters file. On UNIX machines you could write a shell script to do that,
but an easier way is perhaphs to use python itself to write the script. For example, the python script could
be:

#! /usr/bin/env python
for i in range(5):

cmd = "pychoacoustics --file prms.prm -l L1 -s s1 -q -a \
--recursion-depth 3000"

here we’re telling pychoacoustics to load the parameters file prms.prm, set the listener identifier to “L1”
and the session label to s1. The -q option instructs the program to exit at the end of the experiment. This way
the recursion depth count is effectively restarted each time pychoacoustics is closed and launched again
from the script. When the --recursion-depth option is passed as a command line argument, as in the
example above, it overrides the max recursion depth value set in the preferences window. If the -a option is
passed, as in the examples above, pychoacoustics will start automatically at the beginning of each of the
five series . This is useful for debugging or simulations, so that you can start the script and leave the program
complete unattended (you need to make sure that the “Shuffling Mode” is not set to “Ask” and that you pass
listener and session labels if you want the program to run completely unattended).

8.7. Response Mode 81

pychoacoustics Documentation, Release 0.6.8

82 Chapter 8. The pychoacoustics Engine

CHAPTER

NINE

WRITING YOUR OWN EXPERIMENTS

9.1 First Steps

pychoacoustics can be easily extended with new experiments written by users. User-written experiments
need to reside in a Python package called labexp, and this package needs to be in your Python path. No
worries if you’re not familiar with packaging Python software, we’ll go through the process of adding a new
experiment step by step.

First of all, you need to create a directory called pychoacoustics_exp inside your home directory, and
a sub-directory called labexp inside the pychoacoustics_exp directory. If you don’t know where your
home directory is located you can find out from a Python shell with the following commands:

import os
os.path.expanduser('~')

You can create the pychoacoustics_exp and labexp directories from a Python shell as shown below:

import os
dirPath = os.path.expanduser('~/pychoacoustics_exp/labexp/')
os.makedirs(dirPath)

Each user experiment will be written in a single file contained in the labexp directory. Let’s imagine we
want to create an experiment for a frequency discrimination task. We create a file named freq.py in the
labexp directory. In addition to the experiment file we need an additional file that lists all the experiments
contained in the labexp directory. This file must be named __init__.py, and in our case it will have the
following content:

__all__ = ["freq"]

here the variable __all__ is simply a Python list with the name of the experiment files. So, if one day we
decide to write a new experiment on, let’s say, level discrimination, in a file called lev.py we would simply
add it to the list in __init__.py:

__all__ = ["freq",
"lev"]

For people familiar with packaging Python modules it should be clear by now that the labexp folder is a
Python package containing various modules (the experiment files). If at some point we want to remove an

83

pychoacoustics Documentation, Release 0.6.8

experiment from pychoacoustics, for example because it contains a bug that does not allow the program
to start, we can simply remove it from the list in __init__.py. Let’s go back to the freq.py file. Here we
need to define three functions. For our example the names of these functions would be:

initialize_freq()
select_default_parameters_freq()
doTrial_freq()

basically the function names consist of a fixed prefix, followed by the name of the experiment file. So, in the
case of the level experiment example, written in the file lev.py, the three functions would be called:

initialize_lev()
select_default_parameters_lev()
doTrial_lev()

we’ll look at each function in detail in the next section. Briefly, the initialize_ function is used to set
some general parameters and options for our experiment; the select_default_parameters_ function lists
all the widgets (text fields and choosers) of our experiment and their default values; finally, the doTrial_
function contains the code that generates the sounds and plays them during the experiment.

9.1.1 Anatomy of a pychoacoustics experiment file

The initialize_ function

The initialize_ function of our frequency discrimination experiment is shown below:

1 def initialize_freq(prm):
2 exp_name = "Frequency Discrimination Demo"
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = ["Transformed Up-Down",
6 "Weighted Up-Down",
7 "UML",
8 "PSI"]
9

10 prm[exp_name]["opts"] = ["hasISIBox", "hasAlternativesChooser",
11 "hasFeedback"]
12

13 prm[exp_name]['defaultAdaptiveType'] = "Geometric"
14 prm[exp_name]['defaultNIntervals'] = 2
15 prm[exp_name]['defaultNAlternatives'] = 2
16 prm[exp_name]["execString"] = "freq"
17 prm[exp_name]["version"] = "1"
18

19 return prm

When the function is called, it is passed a dictionary containing various parameters through the prm argument.
The function modifies this dictionary by adding the parameters of the experiment, and returns the dictionary

84 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

back to the main routine.

Let’s analyze the function for our experiment. On line 2 we give a label to the experiment, this can be
anything we want, except the label of an experiment already existing. On line 3 we add this experiment
label to the list of “experimentsChoices”. On line 4 we create a new sub-dictionary that has as a key the
experiment label. Next we list the paradigms that our experiment supports by creating a paradigmChoices
key and giving the names of the supported paradigms as a list. The paradigms listed here must be within
the set of paradigms supported by pychoacoustics (see Section Available Paradigms for a description of
the paradigms currently supported). In the next line we set an opts key containing a list of options. The
full list of options that can be set here is described in details in Section The Experiment “opts”. In brief,
for our experiment we want to have a widget to set the silent interval (ISI) between presentation intervals
(hasISIBox), a widget to choose the number of response alternatives (hasAlternativesChooser), and a
widget to set the feedback on or off for a given block of trials (hasFeedback).

In the next line we specify defaultAdaptiveType, the default type of adaptive track that will be selected
when the experiment is loaded, this could be either “Geometric”, or “Arithmetic”. Specifying a “default-
AdaptiveType” is optional. The type of the adaptive procedure can in any case be changed later by the
experimenter in the control window. In the next two lines we specify the default number of intervals, and the
default number of alternatives that will be used when the experiment is loaded. Since we have inserted the
“hasAlternativesChooser” option, the number of intervals and alternatives can be later changed by the exper-
imenter using the appropriate choosers in the control window. The next line of the initialize_ function
sets the execString of our experiment. This must be the name of our experiment file, so in our case freq.
Finally, we give our experiment a version label. This is optional, but it can be very useful as this version label
will be stored in the result files when the experiment is run. This makes it possible to track which version of
the experiment was used in a given session.

Before we proceed, a note on the use of a function called QApplication.translate is necessary. You
may occasionally see this function in pychoacoustics experiment files and in this manual. This func-
tion serves to translate strings from one language to another. For the moment it doesn’t really do much
in pychoacoustics because string translation is not currently functional for the control window, it is only
functional for the response box. This function takes three string arguments, and the text to be translated is the
middle argument. For example, in the initialize_ function above, we could have written QApplication.
translate("", "Transformed Up-Down", "") instead of Transformed Up-Down. You don’t need to
use this function in your experiments. If you do, you need to import the QApplication. How to do this
depends on which version of PyQt you’re using, as shown below:

from PyQt4.QtGui import QApplication #if you're using PyQt4
from PySide.QtGui import QApplication #if you're using PySide
from PyQt5.QtWidgets import QApplication #if you're using PyQt5

9.1. First Steps 85

pychoacoustics Documentation, Release 0.6.8

The select_default_parameters_ function

All the widgets (text fields and choosers) needed for an experiment are defined in the
select_default_parameters_ function. For our frequency discrimination experiment, the func-
tion looks as follows:

1 def select_default_parameters_freq(parent, paradigm, par):
2

3 field = []
4 fieldLabel = []
5 chooser = []
6 chooserLabel = []
7 chooserOptions = []
8

9 fieldLabel.append("Frequency (Hz)")
10 field.append(1000)
11

12 fieldLabel.append("Difference (%)")
13 field.append(20)
14

15 fieldLabel.append("Level (dB SPL)")
16 field.append(50)
17

18 fieldLabel.append("Duration (ms)")
19 field.append(180)
20

21 fieldLabel.append("Ramps (ms)")
22 field.append(10)
23

24

25 chooserOptions.append(["Right",
26 "Left",
27 "Both"])
28 chooserLabel.append("Ear:")
29 chooser.append("Right")
30

31 prm = {}
32 prm['field'] = field
33 prm['fieldLabel'] = fieldLabel
34 prm['chooser'] = chooser
35 prm['chooserLabel'] = chooserLabel
36 prm['chooserOptions'] = chooserOptions
37

38 return prm

The select_default_parameters_ function accepts three arguments, “parent” is simply a reference to the
pychoacoustics application, “paradigm” is the paradigm with which the function has been called, while “par”
is a variable that can hold some special values for initializing the function. The use of the “par” argument

86 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

will be discussed later on when procedures with interleaved tracks will be described. For the time being you
should just know that the select_default_parameters_ should always have this argument. From line
three to line seven, we create a series of empty lists. The field and fieldLabel lists will hold the default
values of our text field widgets, and their labels, respectively. The chooser and chooserLabel lists will
likewise hold the default values of our chooser widgets, and their labels, while the chooserOptions list
will hold the possible values that our choosers can take. On lines 9 to 29 we populate these lists for our fre-
quency discrimination experiment. From line 31 to line 36 we insert in a dictionary the field, fieldLabel,
chooser, chooserLabel and chooserOptions lists that we previously creaetd and populated. Finally, on
line 38, the function returns this dictionary.

The doTrial_ function

The doTrial_ function is called each time a trial is started, and is responsible for generating the sounds
and presenting them to the listener. The doTrial_ function for our frequency discrimination experiment is
shown below:

1 def doTrial_freq(parent):
2

3 currBlock = 'b'+ str(parent.prm['currentBlock'])
4 if parent.prm['startOfBlock'] == True:
5 parent.prm['adaptiveParam'] = \
6 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Difference (%)")]
7 parent.writeResultsHeader('log')
8

9 frequency = \
10 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Frequency␣

→˓(Hz)")]
11 level = \
12 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Level (dB␣

→˓SPL)")]
13 duration = \
14 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Duration␣

→˓(ms)")]
15 ramps = \
16 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Ramps (ms)

→˓")]
17 channel = \
18 parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index("Ear:")]
19 phase = 0
20

21 correctFrequency = frequency + (frequency*parent.prm['adaptiveParam'])/100
22 stimulusCorrect = pureTone(correctFrequency, phase, level, duration,
23 ramps, channel, parent.prm['sampRate'],
24 parent.prm['maxLevel'])
25

(continues on next page)

9.1. First Steps 87

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

26 stimulusIncorrect = []
27 for i in range((parent.prm['nIntervals']-1)):
28 thisSnd = pureTone(frequency, phase, level, duration, ramps, channel,
29 parent.prm['sampRate'], parent.prm['maxLevel'])
30 stimulusIncorrect.append(thisSnd)
31

32 parent.playRandomisedIntervals(stimulusCorrect, stimulusIncorrect)

As you can see on the first line, the doTrial_ function is passed as an argument its parent. This is impor-
tant because the parent contains a dictionary with the parameters for the current experiment (parent.prm).
The parameters for each stored block of the experiment are stored in the parent.prm dictionary with keys
starting with b followed by the block number. For example parent.prm['b3'] contains the parameters
for the third stored block. The current block number is stored in parent.prm['currentBlock'], and on
line 3 we retrieve the dictionary key for the current block. On line 4 we start an if block that is executed
only at the first trial of each block. In this block we retrieve the % frequency difference between the standard
and the comparison stimuli for the first trial, and we store it in the parent.prm['adaptiveParam'] vari-
able. Since we’re using an adaptive procedure, this variable will be automatically increased or decreased by
pychoacoustics on successive trials on the bases of the responses given by the listener. On line 7 we tell
pychoacoustics to write the header of the ‘log’ result files (see Log Results Files).

On lines 9-16 we read off the values of the text field widgets for the current block of trials. The values
of these field widgets are stored in the list parent.prm[currBlock]['field'], and we exploit the la-
bel of each text field widget to retrieve its index in the list. For example parent.prm['fieldLabel'].
index("Frequency (Hz)") retrieves the index of the text widget that stores the frequency of the standard
tone for the current block of trials. On line 18 we read off the value of the only chooser widget for the current
block of trials. The values of chooser widgets are stored in the list parent.prm[currBlock]['chooser'],
and we exploit the label of each chooser widget to retrieve its index in the list as we did for text field widgets.

Our next step will be to generate the stimuli for the trial. In a X-Intervals task we have to generate X stim-
uli. In our case, the standard stimuli will have always the same frequency, we retrieved its value on lines
9-10 of our doTrial_ function. If a listener presses the button corresponding to one of the the stan-
dard stimuli his response will be incorrect. For this reason we will store the standard stimuli in a list
called stimulusIncorrect = []. The comparison stimulus will be instead stored in a variable called
stimulusCorrect. The frequency of the comparison stimulus, which can vary from trial to trial, depend-
ing on the current value of parent.prm['adaptiveParam'] is computed on line 21. On lines 22-24 we
generate the stimulus using the pureTone function that is available in the sndlib module. Note that in order
to access this function you need to import it by adding the following line at the top of the freq.py file where
the experiment is stored:

from pychoacoustics.sndlib import pureTone

Note also that we need to pass the current samplig rate and the current maximum output level of our head-
phones (see Edit Phones Dialog) to the pureTone function. Their values are stored respectively in the
parent.prm['sampRate'] and parent.prm['maxLevel'] variables. On lines 26-30 we generate and
store the standard stimuli in the stimulusIncorrect list. The number of standard stimuli to generate
will be equal to the number of intervals minus one. The number of intervals is stored in the parent.
prm['nIntervals'] variable. Finally on line 32 we call the parent.playRandomisedIntervals func-
tion to play the stimuli. This function requires two arguments, the correct stimulus, and a list containing

88 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

the incorrect stimuli. That’s it, our frequency discrimination experiment is ready and we can test it on
pychoacoustics.

Adding support for the Constant Paradigm

So far our frequency discrimination experiment supports only adaptive paradigms.

Adding support for the constant paradigm, in which the frequency difference between the standard and com-
parison stimuli is fixed across a block of trials is easy. All we need to do is add “Constant m-Intervals
n-Alternatives” to the list of paradigms supported paradims in the initialize_ function:

prm[exp_name]["paradigmChoices"] = ["Transformed Up-Down",
"Weighted Up-Down",
"UML",
"PSI"
"Constant m-Intervals n-Alternatives"]

Now our frequency discrimination task supports also the constant paradigm.

Showing/Hiding Widgets Dynamically

Often you may want to write a single experiment that can handle a number of different experimental condi-
tions. This usually leads to a growing number of widgets in the control window that can be distracting. To
address this issue, in pychoacoustics it is possible to dinamically show or hide widgets depending on the
value taken by chooser widgets. To do this, you need to write a function called get_fields_to_hide_ that
specifies the conditions upon which certain widgets are shown or hidden.

For a practical example, let’s extend the frequency discrimination experiment described in the sections
above so that it can handle not only conditions in which the standard frequency is fixed, but also condi-
tions in which the standard frequency is roved from trial to trial within a specified frequency range. In the
select_default_parameters_ function of our frequency discrimination experiment we had a text field
for setting the standard frequency:

fieldLabel.append("Frequency (Hz)")
field.append(1000)

now we’ll add two additional text fields to set the frequency range for the roved-frequency case:

fieldLabel.append("Frequency (Hz)")
field.append(1000)

fieldLabel.append("Min. Frequency (Hz)")
field.append(250)

fieldLabel.append("Max. Frequency (Hz)")
field.append(4000)

9.1. First Steps 89

pychoacoustics Documentation, Release 0.6.8

we also add a chooser to control whether for the current block the standard frequency should be fixed or
roved:

chooserOptions.append(["Fixed",
"Roved"])

chooserLabel.append("Standard Frequency:")
chooser.append("Fixed")

The get_fields_to_hide_ for this experiment is shown below:

1 def get_fields_to_hide_freq(parent):
2 if parent.chooser[parent.prm['chooserLabel'].index("Standard Frequency:")].

→˓currentText() == "Fixed":
3 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Min. Frequency (Hz)

→˓"),
4 parent.prm['fieldLabel'].index("Max. Frequency (Hz)

→˓")]
5 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Frequency (Hz)")]
6 elif parent.chooser[parent.prm['chooserLabel'].index("Standard Frequency:")].

→˓currentText() == "Roved":
7 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Frequency (Hz)")]
8 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Min. Frequency (Hz)

→˓"),
9 parent.prm['fieldLabel'].index("Max. Frequency (Hz)

→˓")]

As for the other experiment functions that we have discussed before, the actual name is the concatenation of
a prefix, in this case get_fields_to_hide_, and the name of the experiment file, in this case freq. As
you can see on line 1, this function takes as an argument parent, which contains the lists of widgets for the
current experiment. We need to tell the get_fields_to_hide_ function that if the standard frequency is
fixed, it should show only the Frequency (Hz) text field, and hide the Min. Frequency (Hz) and Max.
Frequency (Hz) text fields. Vice-versa, if the standard frequency is roved, it should show only the Min.
Frequency (Hz) and Max. Frequency (Hz) text fields, and hide the Frequency (Hz) text field. On line
2 we start an if block which will be executed if the value of the Standard Frequency chooser (retrieved by
the currentText attribute), is set to Fixed. Note how we exploit once again the chooserLabel to find the
index of the chooser we want with parent.prm['chooserLabel'].index("Standard Frequency:").
Next, we define two lists, one containing the indexes of the fields to hide parent.fieldsToHide, and one
containing the indexes of the fields to show parent.fieldsToShow. Once more we exploit the fieldLabel
to retrieve the indexes of the fields we want to get (e.g. parent.prm['fieldLabel'].index("Min.
Frequency (Hz)")). From line 6 to line 9 we handle the case in which the standard frequency is roved.
The logic of the code is the same as for the fixed standard frequency case.

To complete the experiment we need to add a couple of lines to the doTrial_ function to handle the case in
which the standard frequency is roved. The new function is shown below:

1 def doTrial_freq2(parent):
2 currBlock = 'b'+ str(parent.prm['currentBlock'])
3 if parent.prm['startOfBlock'] == True:

(continues on next page)

90 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

4 parent.prm['adaptiveParam'] = \
5 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(

→˓"Difference (%)")]
6 parent.writeResultsHeader('log')
7

8 frequency = \
9 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Frequency␣

→˓(Hz)")]
10 minFrequency = \
11 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Min.␣

→˓Frequency (Hz)")]
12 maxFrequency = \
13 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Max.␣

→˓Frequency (Hz)")]
14 level = \
15 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Level (dB␣

→˓SPL)")]
16 duration = \
17 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Duration (ms)

→˓")]
18 ramps = \
19 parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Ramps (ms)")]
20 phase = 0
21 channel = \
22 parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index("Ear:")]
23 stdFreq = \
24 parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index(

→˓"Standard Frequency:")]
25

26 if stdFreq == "Roved":
27 frequency = random.uniform(minFrequency, maxFrequency)
28 correctFrequency = frequency + (frequency*parent.prm['adaptiveParam'])/100
29 stimulusCorrect = pureTone(correctFrequency, phase, level, duration,
30 ramps, channel, parent.prm['sampRate'],
31 parent.prm['maxLevel'])
32

33 stimulusIncorrect = []
34 for i in range((parent.prm['nIntervals']-1)):
35 thisSnd = pureTone(frequency, phase, level, duration, ramps, channel,
36 parent.prm['sampRate'], parent.prm['maxLevel'])
37 stimulusIncorrect.append(thisSnd)
38 parent.playRandomisedIntervals(stimulusCorrect, stimulusIncorrect)

On lines 10-13 we read off the minimum and maximum frequency values for the roved-standard case. On
line 23-24 we retrieve the value of the Standard Frequency: chooser. On lines 26-27 we state that if the
value of the standard frequency chooser is equal to Roved, then the standard frequency for that trial should be

9.1. First Steps 91

pychoacoustics Documentation, Release 0.6.8

drawn from a uniform distribution ranging from minFrequency to maxFrequency. The rest of the function
is unchanged. Note that we’re using the a Python module called random on line 27, so we need to add import
random at the top of our freq.py file.

It is also possible to show/hide choosers. Let’s extend the frequency-discrimination experiment by allowing
for the possibility that the standard frequency is roved on a log scale (which in fact would be a better choice
given that frequency scaling in the auditory system is approximately logarithmic). To do this, we first add a
new chooser to set the roving scale:

chooserOptions.append(["Linear",
"Log"])

chooserLabel.append("Roving Scale:")
chooser.append("Linear")

Because this chooser is useful only when the standard frequency is roved, we’ll tell the
get_fields_to_hide_ function to show/hide it depending on the value of the Standard Frequency
chooser. The new get_fields_to_hide_ function is shown below:

1 def get_fields_to_hide_freq(parent):
2 if parent.chooser[parent.prm['chooserLabel'].index("Standard Frequency:")].

→˓currentText() == "Fixed":
3 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Min. Frequency (Hz)

→˓"),
4 parent.prm['fieldLabel'].index("Max. Frequency (Hz)

→˓")]
5 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Frequency (Hz)")]
6 parent.choosersToHide = [parent.prm['chooserLabel'].index("Roving Scale:")]
7 elif parent.chooser[parent.prm['chooserLabel'].index("Standard Frequency:")].

→˓currentText() == "Roved":
8 parent.fieldsToHide = [parent.prm['fieldLabel'].index("Frequency (Hz)")]
9 parent.fieldsToShow = [parent.prm['fieldLabel'].index("Min. Frequency (Hz)

→˓"),
10 parent.prm['fieldLabel'].index("Max. Frequency (Hz)

→˓")]
11 parent.choosersToShow = [parent.prm['chooserLabel'].index("Roving Scale:")]

We’ve just added two lines. Line 6 gets executed if the Standard Frequency chooser is set to Fixed,
and adds the Roving Scale chooser to the parent.choosersToHide list. Line 11 gets executed if the
Standard Frequency chooser is set to Roved, and adds the Roving Scale chooser to the parent.
choosersToShow list.

Finally, we need to add/modify a couple of lines of the doTrial_ function. First of all we need to read off
the value of the new Roving Scale chooser:

rovingScale = \
parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index("Roving␣

→˓Scale:")]

second, we need to set the standard frequency depending on whether it is drawn from a linear or a logarithmic

92 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

distribution:

if stdFreq == "Roved":
if rovingScale == "Linear":

frequency = random.uniform(minFrequency, maxFrequency)
elif rovingScale == "Log":

frequency = 10**(random.uniform(log10(minFrequency), log10(maxFrequency)))

Note that we’re using the log10 function from numpy here, so we need to add from numpy import log10
at the top of our freq.py file.

9.2 Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experi-
ment

In the next paragraphs we’ll see an example of an experiment using the “Constant 1-Interval 2-Alternatives”
paradigm. The experiment a is simple “Yes/No” signal detection task. On each trial the listener is presented
with a single interval which may or may not contain a pure tone, and s/he has to tell if the tone was present
or not.

The initialize_ function for the signal detection experiment is shown below, since the general framework
for writing an experiment is the same as for the adaptive paradigm, only the differences from an adaptive-
paradigm experiment will be highlited.

1 def initialize_sig_detect(prm):
2 exp_name = "Signal Detection Demo"
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = ["Constant 1-Interval 2-Alternatives"]
6 prm[exp_name]["opts"] = ["hasFeedback"]
7 prm[exp_name]["buttonLabels"] = ["Yes", "No"]
8 prm[exp_name]['defaultNIntervals'] = 1
9 prm[exp_name]['defaultNAlternatives'] = 2

10

11 prm[exp_name]["execString"] = "sig_detect"
12 return prm

On line 5 we list the available paradigms for the experiment, in this case the only paradigm possible is
Constant 1-Interval 2-Alternatives. On line 7 we insert hasFeedback to the list of experiment
options, so that feedback can be provided at the end of each trial. Since we’ll have a single observation interval
we don’t add the hasISIBox option, because we don’t need to have a silent inteval between observation
intervals. On line 7, we set the labels for the buttons, which represent the two response alternatives: “Yes”
or “No”. On line 8 and line 9 we set the number of intervals and the number of response alternatives.

The select_default_parameters_ function for the signal detection experiment is shown below:

1 def select_default_parameters_sig_detect(parent, par):
2

(continues on next page)

9.2. Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment 93

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

3 field = []
4 fieldLabel = []
5 chooser = []
6 chooserLabel = []
7 chooserOptions = []
8

9 fieldLabel.append(parent.tr("Frequency (Hz)"))
10 field.append(1000)
11

12 fieldLabel.append(parent.tr("Duration (ms)"))
13 field.append(2)
14

15 fieldLabel.append(parent.tr("Ramps (ms)"))
16 field.append(4)
17

18 fieldLabel.append(parent.tr("Level (dB SPL)"))
19 field.append(30)
20

21 chooserOptions.append([parent.tr("Right"), parent.tr("Left"), parent.tr("Both
→˓")])

22 chooserLabel.append(parent.tr("Channel:"))
23 chooser.append(parent.tr("Both"))
24

25 prm = {}
26 prm['field'] = field
27 prm['fieldLabel'] = fieldLabel
28 prm['chooser'] = chooser
29 prm['chooserLabel'] = chooserLabel
30 prm['chooserOptions'] = chooserOptions
31

32 return prm

there is nothing really new here compared to experiments with adaptive paradigms that we have seen before.
We initialize the text fields that we need in order to set the frequency duration and level of the signal. We
also initialize a chooser to set the channels on which the signal should be presented.

The doTrial_ function for the signal detection task is shown below:

1 def doTrial_sig_detect(parent):
2

3 currBlock = 'b'+ str(parent.prm['currentBlock'])
4 if parent.prm['startOfBlock'] == True:
5 parent.writeResultsHeader('log')
6 parent.prm['conditions'] = ["Yes","No"]
7

8 parent.currentCondition = random.choice(parent.prm['conditions'])
(continues on next page)

94 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

9 if parent.currentCondition == 'Yes':
10 parent.correctButton = 1
11 elif parent.currentCondition == 'No':
12 parent.correctButton = 2
13

14 freq = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(
→˓"Frequency (Hz)")]

15 dur = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(
→˓"Duration (ms)")]

16 ramps = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(
→˓"Ramps (ms)")]

17 lev = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(
→˓"Level (dB SPL)")]

18 phase = 0
19 channel = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].

→˓index(parent.tr("Channel:"))]
20

21 if parent.currentCondition == 'No':
22 lev = -200
23 sig = pureTone(freq, phase, lev, dur, ramps, channel, parent.prm['sampRate'],␣

→˓parent.prm['maxLevel'])
24

25

26 parent.playSequentialIntervals([sig])

For experiments using the “Constant 1-Interval 2-Alternatives” paradigm it is necessary to list the experi-
mental conditions in the doTrial_ function. We do this on line 6. On line 8, we bind the response buttons
to the correct response. Since the button number 1 is the “Yes” button, we say that in the case of a signal trial
(parent.currentCondition == "Yes") the correct button to press is the button number 1, otherwise the
correct button to press is the button number 2.

On lines 14-23 we read off the values of the text fields and generate the sound to play (signal or silence) ac-
cording to the experimental condition. Finally, on line 25 we use the parent.playSequentialIntervals
function to present the sound to the listener. This function accepts as an argument a list of sounds to
play sequentially. In our case we have only a single sound to insert in the list. More details on the
playSequentialIntervals function are provided in Section The Play Sound Functions.

9.3 Writing an experiment for the Transformed Up-Down Inter-
leaved, Weighted Up-Down Interleaved, and Multiple Constants
m-Intervals n-Alternatives Paradigms

This section will walk you through an example of an experiment that can be used with the transformed up-
down interleaved and weighted up-down interleaved paradigms. These paradigms are simple extensions of
the transformed up-down and weighted up-down paradigms in which multiple independent adaptive tracks
are run simultaneously and are randomly interleaved in a single block of trials.

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down
Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms

95

pychoacoustics Documentation, Release 0.6.8

Because experiments that support the transformed up-down interleaved and weighted up-down interleaved
paradigms can be easily modified to support also the multiple constants m-intervals n-alternatives paradigm,
this paradigm will be also added in our example experiment. This paradigm is a simple extension of the con-
stant m-intervals n-alternatives paradigm, in which rather than having a single constant difference between
the standard and comparison tones, multiple constant differences are tested in a single block of trials.

The example experiment that we’ll look at is a simple signal detection in quiet experiment, that could be used
to measure an audiogram. For this reason it is called “Demo Audiogram Multiple Frequencies” (it can be
found in the file audiogram_mf.py in the default_experiments folder). The experiment can be used to
setup a virtually unlimited number of adaptive tracks, and each track can be used to track the signal-detection
threshold for a specific frequency.

As for the multiple constants procedure, the experiment could be similarly used to measure percent correct
performance for tones of different frequencies presented at the same level. However, a more interesting
possibility is to use the experiment to measure percent correct performance for the same frequency at different
fixed levels. This could then be used to derive a psychometric function relating percent correct performance
to signal level.

The initialize_ function of the experiment is shown below:

1 def initialize_audiogram_mf(prm):
2 exp_name = QApplication.translate("","Demo Audiogram Multiple Frequencies","")
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = [QApplication.translate("","Transformed Up-

→˓Down Interleaved",""),
6 QApplication.translate("","Weighted Up-Down␣

→˓Interleaved",""),
7 QApplication.translate("","Multiple␣

→˓Constants m-Intervals n-Alternatives","")]
8

9

10 prm[exp_name]["opts"] = ["hasISIBox", "hasAlternativesChooser", "hasFeedback",
11 "hasNTracksChooser"]
12 prm[exp_name]['defaultAdaptiveType'] = QApplication.translate("","Arithmetic",

→˓"")
13 prm[exp_name]['defaultNIntervals'] = 2
14 prm[exp_name]['defaultNAlternatives'] = 2
15 prm[exp_name]['defaultNTracks'] = 4
16

17 prm[exp_name]["execString"] = "audiogram_mf"
18 prm[exp_name]["version"] = "1"
19

20 return prm

the first part of the function doesn’t need much explanation if you’ve follwed the previous examples. The
experiments opts has a new item hasNTracksChooser. This option allows the user to dynamically change
the number of adaptive tracks to be used (or the number of constant differences to measure for the multiple
constants paradigm). Besides this, the only new thing compared to previous examples is that we also specify

96 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

the default number of tracks with prm[exp_name]['defaultNTracks'] = 4.

The select_default_parameters_ for the “Demo Audiogram Multiple Frequencies” experiment is
shown below:

1 def select_default_parameters_audiogram_mf(parent, par):
2

3 nDifferences = par['nDifferences']
4

5 field = []
6 fieldLabel = []
7 chooser = []
8 chooserLabel = []
9 chooserOptions = []

10

11 for i in range(nDifferences):
12 fieldLabel.append(parent.tr("Frequency (Hz) " + str(i+1)))
13 field.append(1000+1000*i)
14 fieldLabel.append(QApplication.translate("","Level (dB SPL) " + str(i+1),"

→˓"))
15 field.append(50)
16

17 fieldLabel.append(QApplication.translate("","Bandwidth (Hz)",""))
18 field.append(10)
19

20 fieldLabel.append(QApplication.translate("","Duration (ms)",""))
21 field.append(180)
22

23 fieldLabel.append(QApplication.translate("","Ramps (ms)",""))
24 field.append(10)
25

26

27 chooserOptions.append([QApplication.translate("","Right",""),
28 QApplication.translate("","Left",""),
29 QApplication.translate("","Both","")])
30 chooserLabel.append(QApplication.translate("","Ear:",""))
31 chooser.append(QApplication.translate("","Right",""))
32 chooserOptions.append([QApplication.translate("","Sinusoid",""),
33 QApplication.translate("","Narrowband Noise","")])
34 chooserLabel.append(QApplication.translate("","Type:",""))
35 chooser.append(QApplication.translate("","Sinusoid",""))
36

37 prm = {}
38 prm['field'] = field
39 prm['fieldLabel'] = fieldLabel
40 prm['chooser'] = chooser
41 prm['chooserLabel'] = chooserLabel
42 prm['chooserOptions'] = chooserOptions

(continues on next page)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down
Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms

97

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

43

44 return prm

The transformed/weighted up-down interleaved paradigms can be run with any number of adaptive tracks.
Similarly, the multiple constants m-intervals n-alternatives procedure can be run with any number of constant
differences between the standard and comparison intervals. All the user has to do is select the desired number
of adaptive tracks, or constant differences from the appropriate chooser in the pychoacoustics control
window. select_default_parameters_ function, however, needs to know how many tracks or how many
constant differences are being run in order to set up the necessary fields storing the experimental variables.
The par argument that is always passed to the select_default_parameters_ function has the purpose
of passing additional parameters to dinamycally modify the behavior of the function in cases like this.

In the case of paradigms with interleaved tracks, or multiple constant differences the par argument has a key
called nDifferences that specifies the number of tracks or constant differences. For the current experiment
we retieve this value on line 3. Then, on lines 11-15 we set up a for loop in which we add a field to store
the frequency and level of the tones for each adaptive track. The rest of the function is similar to previous
examples, so it will not be discussed further.

The get_fields_to_hide_ function for the “Demo Audiogram Multiple Frequencies” experiment is
shown in the code block below. Again, nothing new here.

1 def get_fields_to_hide_audiogram_mf(parent):
2 if parent.chooser[parent.prm['chooserLabel'].index(QApplication.translate("",

→˓"Type:",""))].currentText() == QApplication.translate("","Sinusoid",""):
3 parent.fieldsToHide = [parent.prm['fieldLabel'].index(QApplication.

→˓translate("","Bandwidth (Hz)",""))]
4 else:
5 parent.fieldsToShow = [parent.prm['fieldLabel'].index(QApplication.

→˓translate("","Bandwidth (Hz)",""))]

The doTrial_ function for the “Demo Audiogram Multiple Frequencies” experiment is shown below:

1 def doTrial_audiogram_mf(parent):
2 currBlock = 'b'+ str(parent.prm['currentBlock'])
3 nDifferences = parent.prm['nDifferences']
4 if parent.prm['startOfBlock'] == True:
5 parent.prm['additional_parameters_to_write'] = {}
6 parent.prm['conditions'] = []
7 parent.prm['adaptiveParam'] = []
8 for i in range(nDifferences):
9 parent.prm['conditions'].append(str(parent.prm[currBlock]['field

→˓'][parent.prm['fieldLabel'].index(QApplication.translate("","Frequency (Hz) "␣
→˓+ str(i+1),""))]))

10 parent.prm['adaptiveParam'].append(parent.prm[currBlock]['field
→˓'][parent.prm['fieldLabel'].index(QApplication.translate("","Level (dB SPL) "␣
→˓+ str(i+1),""))])

11 parent.writeResultsHeader('log')
(continues on next page)

98 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

12

13 frequency = []
14 for i in range(nDifferences):
15 frequency.append(parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Frequency (Hz) " + str(i+1),""))])
16

17 parent.currentCondition = parent.prm['conditions'][parent.prm[
→˓'currentDifference']] #this is necessary for counting correct/total trials

18 correctLevel = parent.prm['adaptiveParam'][parent.prm['currentDifference']]
19

20 currentFrequency = frequency[parent.prm['currentDifference']]
21 bandwidth = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Bandwidth (Hz)",""))]
22 phase = 0
23

24 incorrectLevel = -200
25 duration = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Duration (ms)",""))]
26 ramps = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].

→˓index(QApplication.translate("","Ramps (ms)",""))]
27 channel = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].

→˓index(QApplication.translate("","Ear:",""))]
28 sndType = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].

→˓index(QApplication.translate("","Type:",""))]
29

30 if sndType == QApplication.translate("","Narrowband Noise",""):
31 if bandwidth > 0:
32 parent.stimulusCorrect = steepNoise(currentFrequency-(bandwidth/2),␣

→˓currentFrequency+(bandwidth/2), correctLevel - (10*log10(bandwidth)),
33 duration, ramps, channel, parent.

→˓prm['sampRate'], parent.prm['maxLevel'])
34 else:
35 parent.stimulusCorrect = pureTone(currentFrequency, phase, correctLevel,

→˓ duration, ramps, channel, parent.prm['sampRate'], parent.prm['maxLevel'])
36 elif sndType == QApplication.translate("","Sinusoid",""):
37 parent.stimulusCorrect = pureTone(currentFrequency, phase, correctLevel,␣

→˓duration, ramps, channel, parent.prm['sampRate'], parent.prm['maxLevel'])
38

39

40 parent.stimulusIncorrect = []
41 for i in range((parent.prm['nIntervals']-1)):
42 thisSnd = pureTone(currentFrequency, phase, incorrectLevel, duration,␣

→˓ramps, channel, parent.prm['sampRate'], parent.prm['maxLevel'])
43 parent.stimulusIncorrect.append(thisSnd)
44 parent.playRandomisedIntervals(parent.stimulusCorrect, parent.

→˓stimulusIncorrect)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down
Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms

99

pychoacoustics Documentation, Release 0.6.8

note that on line 3 we retrieve the number of adaptive tracks (for adaptive interleaved paradigms), or the num-
ber of constant differences (for multiple constant paradigms) that we’re currently running. This parameter is
stored in the parent.prm dictionary.

At the start of a block of trials (cfr. line 4) we set up a number of parameters. Among these there are two in
particular that need some explanation. The ``parent.prm[‘adaptiveParam’] on line 7 is a list that is populated
in the for loop starting on line 9 with the initial values of the parameter that is adaptively varying for each
track. The ``parent.prm[‘conditions’] on the other hand is a parameter that is used only when the experiment
is run with the multiple constants m-intervals n-alternatives paradigm. It’s a list of labels for each “condition”
that is being run in the experiment, that is for each constant difference that is being tested.

On lines 13-15 we retrieve the frequencies of the tones used for each track or constant difference.

On line 17 we retrieve the label of the current condition and store it in the parent.currentCondition
variable. Thisvariable will be used by pychoacoustics for keeping count of the correct and total number
of trials for each constant difference when using the multiple constants paradigm. Note how the parent.
prm['currentDifference'] variable is used for this purpose. This variable is the index to the current
track or current cosnatnt difference that is being currently tested. This variable is set outside of the doTrial_
function, (a random track or constant difference is chosen for each trial) but we can retrieve its value through
the parent handle.

On line 18 we make use of the parent.prm['currentDifference'] variable again, this time to retrieve
the level of the comparison stimulus for the track or constant difference that is run on the current trial.
The rest of the function is not different from the doTrial_ functions used in transformed/weighted up-down
paradigms with non-interleaved tracks, and should be easy to follow if you’ve followed the previous examples.

9.3.1 Writing a matching experiment using interleaved adaptive tracks

The transformed up-down and weighted up-down interleaved procedures can be used to write matching ex-
periments. As described by [Jesteadt1980], two interleaved adaptive tracks can be used to target points on the
psychometric function that are symmetric around the 50% point (e.g. 71% and 29%), and then average the
threshold in each track in order to estimate the point of subjective equality. For example, in a level-matching
experiment one track could target the point at which the listener judges the comparison tone to be louder
than the standard tone 71% of the time, while the other track targets the point at which the listener judges
the comparison tone to be louder than the standard 29% of the time (or equivalently, softer than the standard
71% of the time).

In this section we’ll show how to write in pychoacoustics a level-matching experiment similar to
the one described by [Jesteadt1980]. This experiment is one of the default experiments available in
pychoacoustics, and is called Demo Level Matching.

The initialize_ function of the experiment is shown in the code block below.

1 def initialize_lev_match(prm):
2 exp_name = "Demo Level Matching"
3 prm["experimentsChoices"].append(exp_name)
4 prm[exp_name] = {}
5 prm[exp_name]["paradigmChoices"] = ["Transformed Up-Down Interleaved",
6 "Weighted Up-Down Interleaved"]

(continues on next page)

100 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

7

8 prm[exp_name]["opts"] = ["hasISIBox", "hasAlternativesChooser"]
9 prm[exp_name]['defaultAdaptiveType'] = QApplication.translate("","Arithmetic",

→˓"")
10 prm[exp_name]['defaultNIntervals'] = 2
11 prm[exp_name]['defaultNAlternatives'] = 2
12 prm[exp_name]['defaultNTracks'] = 2
13 prm[exp_name]["execString"] = "lev_match"

among the paradigmChoices we include the “Transformed Up-Down Interleaved”, and the “Weighted Up-
Down Interleaved”. The experiment has just two experiment opts: one to add an ISI box, the other one
to add an alternatives chooser (we’ll probably want to run this experiment only with two intervals, and two
alternatives, so in principle we could do without the alternative chooser, but currently, for technical reasons
the hasAlternativesChooser option has to be added with the “Transformed Up-Down Interleaved”, and
the “Weighted Up-Down Interleaved” paradigms). Besides specifying the default number of intervals and
alternatives, we also specify the default number of interleaved tracks using the defaultNTracks key. Be-
cause we have not added a hasNTracksChooser in the experiment the default number of tracks specified
here will be the default and only possible number of tracks in the experiment.

The select_default_parameters_ function is shown below:

1 def select_default_parameters_lev_match(parent, par):
2

3 field = []
4 fieldLabel = []
5 chooser = []
6 chooserLabel = []
7 chooserOptions = []
8

9 fieldLabel.append("Starting Level Track 1 (dB SPL)")
10 field.append(75)
11

12 fieldLabel.append("Starting Level Track 2 (dB SPL)")
13 field.append(55)
14

15 fieldLabel.append(parent.tr("Frequency Standard Tone (Hz)"))
16 field.append(1000)
17

18 fieldLabel.append(parent.tr("Frequency Comparison Tone (Hz)"))
19 field.append(250)
20

21 fieldLabel.append(parent.tr("Level Standard Tone (dB SPL)"))
22 field.append(65)
23

24 fieldLabel.append(parent.tr("Duration (ms)"))
25 field.append(180)

(continues on next page)

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down
Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms

101

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

26

27 fieldLabel.append(parent.tr("Ramps (ms)"))
28 field.append(10)
29

30 chooserOptions.append(["Right", "Left", "Both"])
31 chooserLabel.append(QApplication.translate("","Ear:",""))
32 chooser.append(QApplication.translate("","Both",""))
33

34

35 prm = {}
36 prm['field'] = field
37 prm['fieldLabel'] = fieldLabel
38 prm['chooser'] = chooser
39 prm['chooserLabel'] = chooserLabel
40 prm['chooserOptions'] = chooserOptions
41

42 return prm

the first two fields will be used to set the starting level of the comparison tone in each track. The next two
fields will be used to set the frequencies of the standard and comparison tone. The next field will be used to
set the level of the standard tone which will be fixed throughout a block of trials. The last two fields will be
used to set the duration of the tone (excluding the ramps), and the duration of its onset and offset ramps. The
only chooser will be used to set the ear to which the tones will be presented.

The doTrial_ function for the level matching experiment is shown below:

1 def doTrial_lev_match(parent):
2 currBlock = 'b'+ str(parent.prm['currentBlock'])
3 if parent.prm['startOfBlock'] == True:
4 parent.prm['adaptiveParam'] = []
5 parent.prm['adaptiveParam'].append(parent.prm[currBlock]['field'][parent.

→˓prm['fieldLabel'].index("Starting Level Track 1 (dB SPL)")])
6 parent.prm['adaptiveParam'].append(parent.prm[currBlock]['field'][parent.

→˓prm['fieldLabel'].index("Starting Level Track 2 (dB SPL)")])
7 parent.writeResultsHeader('log')
8

9

10

11 standardFrequency = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].
→˓index("Frequency Standard Tone (Hz)")]

12 comparisonFrequency = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].
→˓index("Frequency Comparison Tone (Hz)")]

13 standardLevel = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(
→˓"Level Standard Tone (dB SPL)")]

14 duration = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index(
→˓"Duration (ms)")]

(continues on next page)

102 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

15 ramps = parent.prm[currBlock]['field'][parent.prm['fieldLabel'].index("Ramps␣
→˓(ms)")]

16 phase = 0
17 channel = parent.prm[currBlock]['chooser'][parent.prm['chooserLabel'].index(

→˓"Ear:")]
18

19 comparisonLevel = parent.prm['adaptiveParam'][parent.prm['currentDifference']]
20

21 comparisonTone = pureTone(comparisonFrequency, phase, comparisonLevel,␣
→˓duration, ramps,

22 channel, parent.prm['sampRate'], parent.prm['maxLevel
→˓'])

23

24 standardToneList = []
25 for i in range((parent.prm['nIntervals']-1)):
26 thisSnd = pureTone(standardFrequency, phase, standardLevel, duration, ramps,

→˓ channel,
27 parent.prm['sampRate'], parent.prm['maxLevel'])
28 standardToneList.append(thisSnd)
29 parent.playRandomisedIntervals(comparisonTone, standardToneList)

The adaptive parameter for an experiment with interleaved tracks is not a single number, but a list containing
the values of the adaptive parameter for each track. Therefore, on line 4 we create the list, and on lines 5 and
6 we populate this list with the initial values of each of the adaptive tracks.

From lines 11 to 17 we retrieve the values of all the fields and choosers. Nothing new here. On line 19 we
retrieve the value of the adaptive parameter (which in this case is the level of the comparison tone) for the
current trial. To do this, we refer to a key in the parent.prm dictionary called currentDifference. This
key holds the index of the track which has been randomly selected by pychoacoustics for the current trial.

From line 21 to 28 we prepare the stimuli to be presented in the standard and comparison intervals. We then
pass these stimuli as arguments to the playRandomisedIntervals functions. This experiment is ready to
be run.

The up-down rules of the two adaptive tracks need to be set up appropriately to run the matching experiment.
Let’s, take as an example the experiment described in [Jesteadt1980] in which we wish to determine the
intensity of a 250-Hz tone required to match the loudness of a 1000-Hz tone presented at 40 dB SPL. In the
pychoacoustics control window, after having selected the Demo Level Matching experiment, we set the
frequency of the standard tone to 1000 Hz, and the frequency of the comparison tone to 250 Hz. We also set
the level of the standard tone to 40 dB SPL. We then set the upper, and lower tracks to 60 and 30 dB SPL,
two values that should bracket the point of subjective equality.

The task for the listener is an objective one: s/he will have to tell on each trial which tone was louder. For
track 1, we set the rule down to 2, and the rule up to 1. For track 2 instead, we set the rule down to 1, and the
rule up to 2. In this way, track 1 will target the point in the psychometric function at which the listener judges
the comparison tone to be louder than the standard 70.7% of the time. Track 2 will target instead the point
in the psychometric function at which the listener judges the comparison tone to be louder than the standard
29.3% of the time. For track 1, when the listener chooses the comparison interval twice in a row the level of

9.3. Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down
Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms

103

pychoacoustics Documentation, Release 0.6.8

the 250-Hz tone (the comparison tone) is decreased, while each time s/he chooses the standard interval the
level of the 250-Hz tone is increased. For track 2, when the listener chooses the standard interval twice in
a row the level of the 250-Hz tone is increased, while each time the listener chooses the level of the 250-Hz
tone is decreased. For both tracks “correct” responses move the track down. There are no correct or incorrect
responses in a subjective task like this. The Corr. Resp. Move Track X (down or up) choosers are not
named appropriately for this task. They should be named something like “when the comparison interval is
chosen track X moves” down or up. However, since the underlying code for adaptive interleaved paradigms
is the same for objective and subjective tasks, for simplicity and ease of maintenance of the underlying code
they are called Corr. Resp. Move Track X (down or up). .

9.4 Writing a “Constant 1-Pair Same/Different” Paradigm Experiment

Todo: Describe of to write experiments for the “Constant 1-Pair Same/Different” paradigm.

9.5 Writing an “Odd One Out” Paradigm Experiment

Todo: Describe of to write experiments for the “Odd One Out” paradigm.

9.6 The Experiment “opts”

• ``hasAlternativesChooser`` This option adds two chooser widgets, one to dynamically change the
number of observation intervals (labelled “Intervals”), and one to dinamically change the number of
response alternatives (labelled “Alternatives). This option is generally used in adaptive paradigms
(“Transformed Up-Down”, “Weighted Up-Down”, as well as their interleaved versions). The num-
ber of response alternatives that can be choosen from the widget can be either equal to the number
of observation intervals, or to the number of observation intervals minus one. In the latter case the
standard stimulus is presented in the first interval, as a reference, with no corresponding response al-
ternative, see [GrimaultEtAl2002] for an example of this 𝑛-intervals, 𝑛 − 1 alternatives presentation
mode. The selected number of intervals and alternatives can be accessed in the experiment file through
the parent.prm['nIntervals'], and parent.prm['nAlternatives'] variables respectively.

• ``hasAltReps`` This option can be used to change the way in which the stimuli are presented in the
“Transformed Up-Down” paradigm or other adaptive paradigms. In these paradigms, normally there
is an observation interval containing the target stimulus (comparison interval), and one or more other
intervals containing the non-target stimuli (standard intervals). An alternative way to present the stim-
uli is to have an alternation of the target and non-target stimuli (e.g. ABAB) in the comparison interval,
and a repetition of the non-target stimulus in the standard interval (AAAA) [KingEtAl2013]. If the
hasAltReps option is enabled, there will be two additional text boxes, Alternated (AB) Reps.
and Alternated (AB) Reps. ISI (ms). The first text box controls the number of times the alter-
nated target and non-target stimuli should be repeated, a value of zero corresponds to no alternation,

104 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

that is only a single stimulus (either the target, or the non target) is presented in each interval. If the
value is one, a single alternation will occur (AB), if the value is two, two alternations occur (ABAB),
and so on. The second text box controls the ISI between the stimuli presented within an interval. The
selected number of alternated repetitions, and the ISI between alternating stimuli can be accessed in the
experiment file through the parent.prm['altReps'], and parent.prm['altRepsISI'] variables
respectively. The setup of the alternated repetitions must be done within each experiment file.

• ``hasFeedback`` This option controls whether the “Response Light” chooser has a “Feedback” option
or not. You may want to enable this option for all “objective” experiments that have a clear “cor-
rect” response. You may want to disable this option for “subjective” experiments, such as matching
experiments, in which there is no “correct” response.

• ``hasISIBox`` If this option is enabled, a box labelled ISI (ms) is added. This is generally used to
set the silent period between observation intervals in the “Transformed Up-Down” and similar adap-
tive procedures. Its value can be accessed in the experiment file through the parent.prm['isi']
variable. However, normally this should not be necessary because the playRandomisedIntervals
function automatically uses this value to set the silent period between observation intervals.

• ``hasNDifferencesChooser`` This option is useful in the “Multiple Constants 1-Interval 2-Alternatives
Paradigm” to dinamically change the number of experimental conditions. For example, if you have
a signal detection experiment in which a fixed number of signals (with a constant amplitude) can
occur, this option allows to choose the number of conditions dinamically. If this option is enabled,
a chooser labelled No. Alternatives is added. The value selected can be accessed through the
par['nDifferences'] variable in the select_default_parameters_ function, and through the
parent.prm['nDifferences'] variable in the doTrial function.

• ``hasNTracksChooser`` This option can be used to dinamically change the number of tracks in in-
terleaved adaptive paradigms (e.g. “Transformed Up-Down Interleaved). If enabled, a No. Tracks
chooser is added. The value selected can be accessed through the par['nDifferences'] variable
in the select_default_parameters_ function, and through the parent.prm['nDifferences']
variable in the doTrial function.

• ``hasPrecursorInterval`` If this option is enabled, a chooser controlling whether a precursor interval
should be presented or not is added. This chooser is labelled Precursor Interval. If this option
is enabled, and the chooser is set to “Yes”, then a precursorStim sound needs to be passed to the
playRandomisedIntervals function. This sound will be presented before each observation interval.

• ``hasPostcursorInterval`` If this option is enabled, a chooser controlling whether a postcursor interval
should be presented or not is added. This chooser is labelled Postcursor Interval. If this option
is enabled, and the chooser is set to “Yes”, then a postcursorStim sound needs to be passed to the
playRandomisedIntervals function. This sound will be presented after each observation interval.

• ``hasPreTrialInterval`` If this option is enabled, a chooser controlling whether a pre-trial interval
should be presented or not is added. This chooser is labelled Pre-Trial Interval. If this option
is enabled, and the chooser is set to “Yes”, then a preTrialStim sound needs to be passed to the
playRandomisedIntervals function. This sound will be presented at the beginning of each trial.

9.6. The Experiment “opts” 105

pychoacoustics Documentation, Release 0.6.8

9.7 The Play Sound Functions

Todo: Illustrate the functions to play sounds

9.8 Simulations

pychoacoustics is not designed to run simulations in itself, however it provides a hook to
redirect the control flow to an auditory model that you need to specify yourself in the experiment
file. You can retrieve the current response mode from the experiment file with:

1 parent.prm['allBlocks']['responseMode']

so, in the experiment file, after the creation of the stimuli for the trial you can redirect the control flow of the
program depending on the response mode:

1 if parent.prm['allBlocks']['responseMode'] != "Simulated Listener":
2 #we are not in simulation mode, play the stimuli for the listener
3 parent.playSoundSequence(sndSeq, ISIs)
4 if parent.prm['allBlocks']['responseMode'] == "Simulated Listener":
5 #we are in simulation mode
6 #pass the stimuli to an auditory model and decision device
7 #---
8 #Here you specify your model, pychoacoustics doesn't do it for you!
9 # at the end your simulated listener arrives to a response that is

10 # either correct or incorrect
11 #---
12 parent.prm['trialRunning'] = False
13 #this is needed for technical reasons (if the 'trialRunning'
14 #flag were set to 'True' pychoacoustics would not process
15 #the response.
16 #
17 #let's suppose that at the end of the simulation you store the
18 #response in a variable called 'resp', that can take as values
19 #either the string 'Correct' or the string 'Incorrect'.
20 #You can then proceed to let pychoacoustics process the response:
21 #
22 if resp == 'Correct':
23 parent.sortResponse(parent.correctButton)
24 elif resp == 'Incorrect':
25 #list all the possible 'incorrect' buttons
26 inc_buttons = numpy.delete(numpy.arange(
27 self.prm['nAlternatives'])+1,
28 self.correctButton-1))

(continues on next page)

106 Chapter 9. Writing your own Experiments

pychoacoustics Documentation, Release 0.6.8

(continued from previous page)

29 #choose one of the incorrect buttons
30 parent.sortResponse(random.choice(inc_buttons))

9.8. Simulations 107

pychoacoustics Documentation, Release 0.6.8

108 Chapter 9. Writing your own Experiments

CHAPTER

TEN

TROUBLESHOOTING

10.1 The computer crashed in the middle of an experimental session

pychoacoustics saves the results at the end of each block, therefore only the results from the last uncom-
pleted block will be lost, the results of completed blocks will not be lost. If you have an experiment with
many different blocks presented in random order it may be difficult to see which blocks the listener had al-
ready completed and set pychoacoustics to run only the blocks that were not run. To address this issue
pychoacoustics keeps a copy of the parameters, including the block presentation order after shuffling, in a
file called .tmp_prm.prm (this is a hidden file on Linux systems). Therefore, after the crash you can simply
load this parameters file and move to the block position that the listener was running when the computer
crashed to resume the experiment.

A second function of the .tmp_prm.prm file is to keep a copy of parameters that were stored in memory, but
not saved to a file. If your computer crashed while you were setting up a parameters for an experiment that
were not yet saved (or were only partially saved) to a file, you can retrieve them after the crash by loading the
.tmp_prm.prm file. One important thing to keep in mind is that the .tmp_prm.prm will be overwritten as
soon as new parameters are stored in memory by a pychoacoustics instance opened in the same directory.
Therefore it is advisable to make a copy of the .tmp_prm.prm file renaming it to avoid accidentally loosing
its contents after the crash.

109

pychoacoustics Documentation, Release 0.6.8

110 Chapter 10. Troubleshooting

CHAPTER

ELEVEN

SNDLIB – SOUND SYNTHESIS LIBRARY

111

pychoacoustics Documentation, Release 0.6.8

112 Chapter 11. sndlib – Sound Synthesis Library

CHAPTER

TWELVE

PYSDT – SIGNAL DETECTION THEORY MEASURES

113

pychoacoustics Documentation, Release 0.6.8

114 Chapter 12. pysdt – Signal Detection Theory Measures

CHAPTER

THIRTEEN

REFERENCES

115

pychoacoustics Documentation, Release 0.6.8

116 Chapter 13. References

CHAPTER

FOURTEEN

GNU FREE DOCUMENTATION LICENSE

Version 1.2, November 2002

Copyright ©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or

117

pychoacoustics Documentation, Release 0.6.8

to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming sim-
ple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not gener-
ally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the Docu-

118 Chapter 14. GNU Free Documentation License

pychoacoustics Documentation, Release 0.6.8

ment are reproduced in all copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship of the mod-
ifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

119

pychoacoustics Documentation, Release 0.6.8

• Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

• For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

• Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

• Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.

• Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

120 Chapter 14. GNU Free Documentation License

pychoacoustics Documentation, Release 0.6.8

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

121

pychoacoustics Documentation, Release 0.6.8

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License “or any later version” applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .Texts.” line with
this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

122 Chapter 14. GNU Free Documentation License

http://www.gnu.org/copyleft/

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• modindex

• search

123

pychoacoustics Documentation, Release 0.6.8

124 Chapter 15. Indices and tables

BIBLIOGRAPHY

[GrimaultEtAl2002] Grimault, N., Micheyl, C., Carlyon, R. P., & Collet, L. (2002). Evidence for two pitch
encoding mechanisms using a selective auditory training paradigm. Percept. Psychophys., 64(2),
189–197.

[Jesteadt1980] Jesteadt,W. (1980). An adaptive procedure for subjective judgments. Percept Psychophys,
28(1), 85–88.

[Kaernbach1991] Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. Per-
cept Psychophys, 49(3), 227–229.

[KingEtAl2013] King, A., Hopkins, K., & Plack, C. J. (2013). Differences in short-term training for inter-
aural phase difference discrimination between two different forced-choice paradigms. J. Acoust.
Soc. Am., 134(4), 2635. doi:10.1121/1.4819116

[Levitt1971] Levitt, H. (1971). Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am.,
49(2), 467-477.

[MacmillanAndCreelman2005] Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s
guide (2dn ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

[Prins2013] Prins, N. (2013). The psi-marginal adaptive method: How to give nuisance parameters the at-
tention they deserve (no more, no less). Journal of Vision, 13, 1–17. doi:10.1167/13.7.3

[ShenAndRichards2012] Shen, Y., & Richards, V. (2012). A maximum-likelihood procedure for estimating
psychometric functions: Thresholds, slopes, and lapses of attention. J. Acoust. Soc. Am., 132,
957–967. doi:10.1121/1.4733540

[TaylorAndCreelman1967] Taylor, M., & Creelman, C. (1967). PEST: Efficient estimates on probability
functions. J. Acoust. Soc. Am., 41(4A), 782-787. doi:10.1121/1.1910407

[VersfeldEtAl1996] Versfeld, N. J., Dai, H., & Green, D. M. (1996). The optimum decision rules for the
oddity task. Percept. Psychophys., 58(1), 10–21.

125

	What is pychoacoustics?
	Installation
	Graphical User Interface
	Quickstart
	The Control Window
	General Widgets (left panel)
	Additional Widgets (left panel)
	General Widgets (right panel)
	Paradigm Widgets
	1-Pair Same/Different Paradigm Widgets
	Constant 1-Interval 2-Alternatives Paradigm Widgets
	Constant m-Intervals n-Alternatives Paradigm Widgets
	Multiple Constants ABX Paradigm Widgets
	Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets
	Multiple Constants m-Intervals n-Alternatives Paradigm Widgets
	Odd One Out Paradigm Widgets
	PEST Paradigm Widgets
	PSI Paradigm Widgets
	Transformed Up-Down Paradigm Widgets
	Transformed Up-Down Interleaved Paradigm Widgets
	UML Paradigm Widgets
	Weighted Up-Down Paradigm Widgets
	Weighted Up-Down Interleaved Paradigm Widgets
	The Menu Bar
	The File Menu
	The Edit Menu
	The Tools Menu
	The Help Menu
	The “what’s this?” Button.

	Process Results Dialog
	Edit Preferences Dialog
	General
	Sound
	Response Box
	Notifications
	EEG

	Edit Phones Dialog
	Calibrating with an SPL meter
	Calibrating with a voltmeter

	Edit Experimenters Dialog
	The Response Box

	Command Line User Interface
	Paradigms
	Available Paradigms
	Transformed Up-Down
	Transformed Up-Down Interleaved
	Weighted Up-Down
	Weighted Up-Down Interleaved
	Constant m-Intervals n-Alternatives
	Constant 1-Interval 2-Alternatives
	Constant 1-Pair Same/Different
	Multiple Constants 1-Pair Same/Different
	Multiple Constants ABX
	Odd One Out
	PEST
	PSI
	UML

	Result Files
	Tabular Results Files
	Plain-Text Result Files
	Result Files by Paradigm
	Transformed Up-Down and Weighted Up-Down
	Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Tabular Session-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down)
	Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-Down)

	Transformed Up-Down and Weighted Up-Down Interleaved Result Files
	Tabular Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Tabular Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Tabular Session-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Plain-Text Block-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Plain-Text Trial-Summary Result Files (Transformed Up-Down and Weighted Up-Down Interleaved)
	Plain-Text Session-Summary Files (Transformed Up-Down and Weighted Up-Down Interleaved)

	UML and PSI Result Files
	Tabular Block-Summary Result Files (UML and PSI)
	Tabular Trial-Summary Result Files (UML and PSI)
	Tabular Session-Summary Result Files (UML and PSI)
	Plain-Text Block-Summary Result Files (UML and PSI)
	Plain-Text Trial-Summary Result Files (UML and PSI)
	Plain-Text Session-Summary Result Files (UML and PSI)

	PEST Result Files
	Tabular Block-Summary Result Files (PEST)
	Tabular Trial-Summary Result Files (PEST)
	Tabular Session-Summary Result Files (PEST)
	Plain-Text Block-Summary Result Files (PEST)
	Plain-Text Trial-Summary Result Files (PEST)
	Plain-Text Session-Summary Files (PEST)

	Constant m-Intervals n-Alternatives Result Files
	Tabular Block-Summary Result Files (Constant m-Intervals n-Alternatives)
	Tabular Trial-Summary Result Files (Constant m-Intervals n-Alternatives)
	Tabular Session-Summary Result Files (Constant m-Intervals n-Alternatives)
	Plain-Text Block-Summary Result Files (Constant m-Intervals n-Alternatives)
	Plain-Text Trial-Summary Result Files (Constant m-Intervals n-Alternatives)
	Plain-Text Session-Summary Files (Constant m-Intervals n-Alternatives)

	Multiple Constants m-Intervals n-Alternatives Result Files
	Tabular Block-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Tabular Trial-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Tabular Session-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Plain-Text Block-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Plain-Text Trial-Summary Result Files (Multiple Constants m-Intervals n-Alternatives)
	Plain-Text Session-Summary Files (Multiple Constants m-Intervals n-Alternatives)

	Constant 1-Intervals 2-Alternatives Result Files
	Tabular Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Tabular Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Tabular Session-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Plain-Text Block-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Plain-Text Trial-Summary Result Files (Constant 1-Intervals 2-Alternatives)
	Plain-Text Session-Summary Files (Constant 1-Intervals 2-Alternatives)

	Multiple Constants 1-Intervals 2-Alternatives Result Files
	Tabular Block-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Tabular Trial-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Tabular Session-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Plain-Text Block-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Plain-Text Trial-Summary Result Files (Multiple Constants 1-Intervals 2-Alternatives)
	Plain-Text Session-Summary Files (Multiple Constants 1-Intervals 2-Alternatives)

	Constant 1-Pair Same/Different Result Files
	Tabular Block-Summary Result Files (Constant 1-Pair Same/Different)
	Tabular Session-Summary Result Files (Constant 1-Pair Same/Different)
	Plain-Text Block-Summary Result Files (Constant 1-Pair Same/Different)
	Plain-Text Trial-Summary Result Files (Constant 1-Pair Same/Different)
	Plain-Text Session-Summary Files (Constant 1-Pair Same/Different)

	Multiple Constants 1-Pair Same-Different Result Files
	Tabular Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Tabular Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Tabular Session-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Plain-Text Block-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Plain-Text Trial-Summary Result Files (Multiple Constants 1-Pair Same-Different)
	Plain-Text Session-Summary Files (Multiple Constants 1-Pair Same-Different)

	Multiple Constants ABX Result Files
	Tabular Block-Summary Result Files (Multiple Constants ABX)
	Tabular Trial-Summary Result Files (Multiple Constants ABX)
	Tabular Session-Summary Result Files (Multiple Constants ABX)
	Plain-Text Block-Summary Result Files (Multiple Constants ABX)
	Plain-Text Trial-Summary Result Files (Multiple Constants ABX)
	Plain-Text Session-Summary Files (Multiple Constants ABX)

	Multiple Constants Odd One Out Result Files
	Tabular Block-Summary Result Files (Multiple Constants Odd One Out)
	Tabular Trial-Summary Result Files (Multiple Constants Odd One Out)
	Tabular Session-Summary Result Files (Multiple Constants Odd One Out)
	Plain-Text Block-Summary Result Files (Multiple Constants Odd One Out)
	Plain-Text Trial-Summary Result Files (Multiple Constants Odd One Out)
	Plain-Text Session-Summary Files (Multiple Constants Odd One Out)

	Multiple Constants Sound Comparison Result Files
	Tabular Block-Summary Result Files (Multiple Constants Sound Comparison)
	Tabular Trial-Summary Result Files (Multiple Constants Sound Comparison)
	Tabular Session-Summary Result Files (Multiple Constants Sound Comparison)
	Plain-Text Block-Summary Result Files (Multiple Constants Sound Comparison)
	Plain-Text Trial-Summary Result Files (Multiple Constants Sound Comparison)
	Plain-Text Session-Summary Files (Multiple Constants Sound Comparison)

	Log Results Files

	Default Experiments
	Audiogram
	Demo Audiogram Multiple Frequencies
	Demo Frequency Discrimination
	Demo Signal Detection
	Dummy Adaptive
	F0DL
	Level Discrimination
	WAV ABX
	WAV Comparison
	WAV Same/Different

	The pychoacoustics Engine
	Sound Output
	Sound Output on Linux
	Sound Output on Windows
	Sound Output on macOS
	Sound Output on FreeBSD

	Parameters Files
	Block Presentation Position
	Displaying Task Instructions
	OS Commands
	Preferences Settings
	Response Mode

	Writing your own Experiments
	First Steps
	Anatomy of a pychoacoustics experiment file
	The initialize_ function
	The select_default_parameters_ function
	The doTrial_ function
	Adding support for the Constant Paradigm
	Showing/Hiding Widgets Dynamically

	Writing a “Constant 1-Interval 2-Alternatives” Paradigm Experiment
	Writing an experiment for the Transformed Up-Down Interleaved, Weighted Up-Down Interleaved, and Multiple Constants m-Intervals n-Alternatives Paradigms
	Writing a matching experiment using interleaved adaptive tracks

	Writing a “Constant 1-Pair Same/Different” Paradigm Experiment
	Writing an “Odd One Out” Paradigm Experiment
	The Experiment “opts”
	The Play Sound Functions
	Simulations

	Troubleshooting
	The computer crashed in the middle of an experimental session

	sndlib – Sound Synthesis Library
	pysdt – Signal Detection Theory Measures
	References
	GNU Free Documentation License
	Indices and tables
	Bibliography

